【八年级上册数学人教版】八上数学知识点归纳_第1页
【八年级上册数学人教版】八上数学知识点归纳_第2页
【八年级上册数学人教版】八上数学知识点归纳_第3页
【八年级上册数学人教版】八上数学知识点归纳_第4页
【八年级上册数学人教版】八上数学知识点归纳_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第【人教版】八年级(上册)数学知识点归纳第十一章三角形知识点一:三角形1、定义:由不在同一条直线上的三条线段顺次首尾相接所组成的图形叫做三角形。2、分类:(1)按角分:锐角三角形;直角三角形;钝角三角形;(2)按边分:不等边三角形;等腰三角形;等边三角形;3、角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。4、中线:连接一个顶点与对边中点的线段叫做三角形的中线。5、高:从三角形的一个顶点向它的对边作垂线,顶点与垂足之间的线段叫做三角形的高。注意:三角形的角平分线、中线和高都有三条。6、三角形的三边关系:三角形的任意两边的和大于第三边,任意两边的差小于第三边。7、三角形的内角:三角形的内角和等于180。如图:1231808、三角形的外角(1)三角形的一个外角与相邻的内角互补。14180(2)三角形的一个外角等于与它不相邻的两个内角的和。423(3)三角形的一个外角大于任何一个与它不相邻的内角。4>2或4>36、三角形的周长、面积求法和三角形稳定性。(1)如图1:C△ABC=AB+BC+AC或C△ABC=a+b+c。四个量中已知其中三个能求第四个。(2)如图2:AD为高,S△ABC=1三个量中已知其中两个能求第三个。(3)如图3:△ABC中,∠ACB=90°,CD为AB边上的高,则有:S△ABC==12·AB·CD=1四条线段中已知其中三条能求第四条。知识点二:多边形及其内角和1、n边形的内角和=180n2;2、n边形的外角和=360。3、一个n边形的对角线有n(n−2)2条,过n边形一个顶点能作出n-3条对角线,把n练习题:1.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()A.角平分线B.中位线C.高D.中线【考点】三角形的角平分线、中线和高.2.下列线段能组成三角形的是()A.1,1,3B.1,2,3C.2,3,5D.3,4,5【考点】三角形三边关系.3.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°【考点】三角形的外角性质;角平分线的定义;三角形内角和定理.4.一个多边形的每个内角都等于120°,则这个多边形的边数为()A.4B.5C.6D.7【考点】多边形内角与外角.第十二章:全等三角形12.1全等三角形(1)、全等图形:形状、大小相同的图形能够完全重合;(2)、全等形:能够完全重合的两个图形叫做全等形;(3)、全等三角形:能够完全重合的两个三角形叫做全等三角形;(4)、平移、翻折、旋转前后的图形全等;(5)、对应顶点:全等三角形中相互重合的顶点叫做对应顶点;(6)、对应角:全等三角形中相互重合的角叫做对应角;(7)、对应边:全等三角形中相互重合的边叫做对应边;(8)、全等表示方法:用“”表示,读作“全等于”(注意:记两个三角形全等时,把表示对应顶点的字母写在对应的位置上)(9)、全等三角形的性质:①全等三角形的对应边相等;②全等三角形的对应角相等;12.2三角形全等的判定(1)若满足一个条件或两个条件均不能保证两个三角形一定全等;(2)三角形全等的判定:①三边对应相等的两个三角形全等;(“边边边”或“SS”S)②两边和它们的夹角对应相等的两个三角形全等;(“边角边”或“SAS”)③两角和它们的夹边对应相等的两个三角形全等;(“角边角”或“ASA”)④两角和其中一角的对边对应相等的两个三角形全等;(“角角边”或“AAS”)⑤斜边和一条直角边对应相等的两个直角三角形全等;(“斜边直角边”或“HL”)注:①证明三角形全等:判断两个三角形全等的推理过程;②经常利用证明三角形全等来证明三角形的边或角相等;③三角形的稳定性:三角形的三边确定了,则这个三角形的形状、大小就确定了;(用“SSS”解释)12.3角的平分线的性质(1)、角的平分线的作法:课本第19页;(2)、角的平分线的性质定理:角的平分线上的点到角的两边的距离相等;(3)、证明一个几何中的命题,一般步骤:①明确命题中的已知和求证;②根据题意,画出图形,并用数学符号表示已知和求证;③经过分析,找出由已知推出求证的途径,写出证明过程;(4)、性质定理的逆定理:角的内部到角两边的距离相等的点在角的平分线上;(利用三角形全等来解释)(5)、三角形的三条角平分线相交于一点,该点为内心;练习题:5.已知△ABC≌△DEF,且∠A=100°,∠E=35°,则∠F=()A.35°B.45°C.55°D.70°【考点】全等三角形的性质.6.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠DB.AB=DCC.∠ACB=∠DBCD.AC=BD【考点】全等三角形的判定.7.下列条件中能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DED.∠B=∠E,∠C=∠F,AC=DF【考点】全等三角形的判定.8.如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()A.7.5°B.10°C.15°D.18°【考点】等腰三角形的性质;三角形内角和定理;三角形的外角性质.9.如图,A、C、B三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,求证:①△ACE≌△DCB;②CM=CN.【考点】全等三角形的判定与性质;等边三角形的性质.10.如图,A、B、C在同一直线上,且△ABD,△BCE都是等边三角形,AE交BD于点M,CD交BE于点N,求证:(1)∠BDN=∠BAM;(2)△BMN是等边三角形.【考点】全等三角形的判定与性质;等边三角形的判定与性质.11.已知:如图,△ABC是等腰直角三角形,D为AB边上的一点,∠ACB=∠DCE=90°,DC=EC.求证:∠B=∠EAC.【考点】全等三角形的判定与性质;等腰直角三角形.第十三章:轴对称13.1轴对称()轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那么就称这个图形是轴(2)对称图形;这条直线叫做它的对称轴;也称这个图形关于这条直线对称;(3)两个图形关于这条直线对称:一个图形沿一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点;(4)轴对称图形与两个图形成轴对称的区别:轴对称图形是指一个图形沿对称轴折叠后这个图形的两部分能完全重合;而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合;(5)轴对称图形与两个图形成轴对称的联系:把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称;把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。(6)垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线;(7)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(8)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线;(9)对称的两个图形是全等的;(10)垂直平分线性质:线段垂直平分线上的点与这条线段两个端点的距离相等;(11)逆定理:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;13.2作轴对称图形(1)作轴对称图形:分别作出原图形中某些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;(注意取特殊点)(2)点(x,y)关于x轴对称的点的坐标为:(x,-y)点(x,y)关于y轴对称的点的坐标为:(-x,y);13.3等腰三角形(1)等腰三角形的性质:①等腰三角形的两个底角相等(“等边对等角”);②等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合;(2)等腰三角形是轴对称图形,三线合一所在直线是其对称轴;(只有1条对称轴)(3)等腰三角形的判定:①如果一个三角形有两条边相等;②如果一个三角形有两个角相等,那么这两个角所对的边也相等;(等角对等边)(4)等边三角形:三条边都相等的三角形;(等边三角形是特殊的等腰三角形)(5)等边三角形的性质:①等边三角形的三个内角都是60〬②等边三角形的每条边都存在三线合一;(6)等边三角形是轴对称图形,对称轴是三线合一所在直线;(有3条对称轴)(7)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角是60〬的等腰三角形是等边三角形;(8)在直角三角形中,如果一个锐角等于30〬,那么它所对的直角边等于斜边的一半;练习题:12.下列“表情图”中,不属于轴对称图形的是()A.流泪B.气晕C.不要啊D.苦瓜脸【考点】轴对称图形.13.如图,在ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E.(1)若∠CAE=∠B+30°,求∠B的大小;(2)若AC=3,AB=5,求△AEB的周长.【考点】线段垂直平分线的性质.第十四章:整式的乘除与因式分解14.1整式的乘法(1)同底数幂的乘法:amanamn(m,n都是正整数)即:同底数幂相乘,底数不变,指数相加;(2)幂的乘方:amnamnn(m,n都是正整数)即:幂的乘方,底数不变,指数相乘;(3)积的乘方:abnanbn(n是正整数)即:积的乘方,等于把积的每一个因式分别乘方,再把所得幂相乘;(4)整式的乘法:①单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;②单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加;③多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;14.2乘法的公式(1)平方差公式:ababa2b2即:两个数的和与这两个数的差的积,等于这两个数的平方差;(2)完全平方公式:(ab)2a22abb2(ab)2a22abb2即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍;添括号:①如果括号前面是正号,括到括号里的各项都不变符号;②如果括号前面是负号,括到括号里的各项都改变符号;14.3整式的除法(1)同底数幂的除法:(amanamn)(a‡0,m,n都是正整数,并且m>n)即:同底数幂相除,底数不变,指数相减;(2)规定:a01(a0)即:任何不等于0的数的0次幂都等于1;(3)整式的除法:①单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则把连同它的指数作为商的一个因式;②多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得商相加;14.4因式分解(1)因式分解:把一个多项式化成几个整式的积的形式的变形叫做因式分解;(也叫做把这个多项式分解因式);(2)公因式:多项式的各项都有的一个公共因式;(3)因式分解的方法:提公因式法:关键在于找出最大公因式因式分解:平方差公式:a²-b²=(a+b)(a-b)公式法完全平方公式:(a+b)²=a²+2ab+b²(a-b)²=a²+2ab+b²练习题:14.下列计算结果正确的是()A.2a3+a3=3a6B.(﹣a)2•a3=﹣a6C.(﹣12)-2=4D.(﹣2)0=﹣【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方;零指数幂;负整数指数幂.15.下列运算正确的是()A.3a+4b=12aB.(ab3)2=ab6C.(5a2﹣ab)﹣(4a2+2ab)=a2﹣3abD.x12÷x6=x2【考点】幂的乘方与积的乘方;合并同类项;去括号与添括号;同底数幂的除法.16.下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+)C.(x+2)(x﹣2)=x2﹣4D.x4﹣1=(x+1)(x+1)(x﹣1)【考点】因式分解的意义.17.下列各式计算正确的是()A.a3•a3=a6B.(﹣a3)2=a6C.(2ab)4=8a4b4D.2a2﹣3a2=1【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.18.分解因式(1)4n(m﹣2)﹣6(2﹣m)(2)x2﹣2xy+y2﹣1.【考点】因式分解-分组分解法;因式分解-提公因式法.19.已知a+b=5,ab=6.求下列各式的值:(1)a2+b2(2)(a﹣b)2.【考点】完全平方公式.第十五章分式知识点总结1、分式形如AB的式子叫做分式,其中A、B是整式,B中必须2、分式的加减法则:(1)ac+b3、分式的乘除法则:(1)ba×4、分式的乘方法则:(ba5、分式有无意义只与分母有关:当分母≠0时,分式有意义;当分母=0时,分式无意义。6、解分式方程的思路分式方程-->去分母-->整式方程解分式方程的一般步骤:1、在方程的两边都乘以最简公分母,约去分母,化成整式方程。2、解这个整式方程3、把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解:否则,这个解不是原分式方程的解,必须舍去4、写出原方程的根:一化二解三检验7、总结列分式方程应注意的问题(1)列分式方程解应用题,应该注意解题的五个步骤(2)列方程的关键是要在准确设元(可直接设,也可间接设)的前提下找出等量关系。(3)解题过程注意画图或列表帮助分析题意找等量关系。(4)注意不要漏检验和写答案。练习题:20.使分式有意义的x的取值范围是()A.x>2B.x<2C.x≠2D.x≥2【考点】分式有意义的条件.21.化简的结果是()A.﹣1B.1C.1+xD.1﹣x【考点】分式的加减法.22.若代数式的值等于0,则x=___________【考点】分式的值为零的条件.23.(1)分解因式:9m﹣m3(2)解方程:【考点】提公因式法与公式法的综合运用;解分式方程.24.计算:(1)(2)(3)【考点】分式的混合运算;实数的运算;零指数幂;负整数指数幂.25.计算:(1)(2)【考点】分式的混合运算.26..【考点】分式的乘除法.参考答案与试题解析1.【解答】解:选D.2.【解答】解:A、∵1+1<3,∴1,1,3不能组成三角形,故本选项错误;B、∵1+2=3,∴1,2,3不能组成三角形,故本选项错误;C、∵2+3=5,∴2,3,5不能组成三角形,故本选项错误;D、∵3+4<5,∴3,4,5,能组成三角形,故本选项正确.故选D.3.【解答】解:延长DC,与AB交于点E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD﹣∠ABD=60°.设AC与BP相交于O,则∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°﹣(∠ACD﹣∠ABD)=20°.故选B.4.【解答】解:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣120°=60°,∴边数n=360°÷60°=6.故选:C.5.【解答】解:∵△ABC≌△DEF,∴∠A=∠D,∵∠A=100°,∴∠D=100°,∵∠E=35°,∴∠F=180°﹣∠D﹣∠E=45°,故选B.6.【解答】解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D.7.【解答】解:A、根据AB=DE,BC=EF,∠A=∠D,不能判断△ABC≌△DEF,故本选项错误;B、根据∠A=∠D,∠B=∠E,∠C=∠F,不能判断△ABC≌△DEF,故本选项错误;C、根据AC=DF,∠B=∠F,AB=DE,不能判断△ABC≌△DEF,故本选项错误;D、∵在△ABC和△DEF中∴△ABC≌△DEF(AAS),故本选项正确;故选D.8.【解答】解:∵AC=AB,∴∠B=∠C,∵∠AEC=∠B+∠BAE=∠B+30°=∠AED+α,∴∠B=∠C=∠AED+α﹣30°,∵AE=AD,∴∠AED=∠ADE=∠C+α,即∠AED=∠AED+α﹣30°+α,∴2α=30°,∴α=15°,∠DEC=α=15°,故选C.9.【解答】证明:①∵△DAC和△EBC都是等边三角形,∴AC=CD,CE=BC,∠ACD=∠ECB=60°,∴∠ACE=∠DCB,在△ACE与△DCB中,∴△ACE≌△DCB(SAS),②∵△ACE≌△DCB,∴∠AEC=∠DBC,∵∠DCE+∠ACD+∠ECB=180°,∠ACD=∠ECB=60°,∴∠DCE=∠ECB=60°,∵CE=BC,∠DCE=∠ECB=60°,∠AEC=∠DBC,在△EMC与△BNC中,∴△EMC≌△BNC(ASA),∴CM=CN.10.【解答】证明:(1)∵等边△ABD和等边△BCE,∴AB=DB,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE和△DBC中,∴△ABE≌△DBC(SAS)∴∠BDN=∠BAM;(2)∵△ABE≌△DBC,∴∠AEB=∠DCB,又∵∠ABD=∠EBC=60°,∴∠MBE=180°﹣60°﹣60°=60°,即∠MBE=∠NBC=60°,在△MBE和△NBC中,∴△MBE≌△NBC(ASA),∴BM=BN,∠MBE=60°,∴△BMN为等边三角形.11.【解答】证明:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=CB.∵∠ACB=∠DCE=90°,∴∠ACE=90°﹣∠ACD=∠DCB.在△ACE和△BCD中,∴△ACE≌△BCD(SAS).∴∠B=∠EAC(全等三角形的对应角相等).12.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误;故选:B.13.【解答】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠B=∠BAE,∴∠CEA=∠B+∠BAE=2∠B,在△ACE中,∠CAE+∠CEA=∠B+30°+2∠B=90°,解得∠B=20°;(2)由勾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论