百校大联考全国名校2025届高考仿真模拟数学试卷含解析_第1页
百校大联考全国名校2025届高考仿真模拟数学试卷含解析_第2页
百校大联考全国名校2025届高考仿真模拟数学试卷含解析_第3页
百校大联考全国名校2025届高考仿真模拟数学试卷含解析_第4页
百校大联考全国名校2025届高考仿真模拟数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

百校大联考全国名校2025届高考仿真模拟数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.展开项中的常数项为A.1 B.11 C.-19 D.512.()A. B. C. D.3.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}时,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.∅4.要得到函数的图象,只需将函数的图象上所有点的()A.横坐标缩短到原来的(纵坐标不变),再向左平移个单位长度B.横坐标缩短到原来的(纵坐标不变),再向右平移个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位长度5.函数在上的最大值和最小值分别为()A.,-2 B.,-9 C.-2,-9 D.2,-26.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为()A. B. C. D.7.已知的值域为,当正数a,b满足时,则的最小值为()A. B.5 C. D.98.的展开式中各项系数的和为2,则该展开式中常数项为A.-40 B.-20 C.20 D.409.已知函数,,若对,且,使得,则实数的取值范围是()A. B. C. D.10.抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为()A. B. C. D.11.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是()A.8 B.9 C.10 D.1112.若的展开式中的系数之和为,则实数的值为()A. B. C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知,若的展开式中的系数比x的系数大30,则______.14.一个袋中装着标有数字1,2,3,4,5的小球各2个,从中任意摸取3个小球,每个小球被取出的可能性相等,则取出的3个小球中数字最大的为4的概率是__.15.高三(1)班共有56人,学号依次为1,2,3,…,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为.16.如果函数(,且,)在区间上单调递减,那么的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角,,的对边分别为,,,且.(1)求;(2)若的面积为,,求的周长.18.(12分)随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:级数一级二级三级四级每月应纳税所得额(含税)不超过3000元的部分超过3000元至12000元的部分超过12000元至25000元的部分超过25000元至35000元的部分税率3102025(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额的分布列与期望.19.(12分)已知数列的前项和为,且点在函数的图像上;(1)求数列的通项公式;(2)设数列满足:,,求的通项公式;(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;20.(12分)设为抛物线的焦点,,为抛物线上的两个动点,为坐标原点.(Ⅰ)若点在线段上,求的最小值;(Ⅱ)当时,求点纵坐标的取值范围.21.(12分)车工刘师傅利用数控车床为某公司加工一种高科技易损零件,对之前加工的100个零件的加工时间进行统计,结果如下:加工1个零件用时(分钟)20253035频数(个)15304015以加工这100个零件用时的频率代替概率.(1)求的分布列与数学期望;(2)刘师傅准备给几个徒弟做一个加工该零件的讲座,用时40分钟,另外他打算在讲座前、讲座后各加工1个该零件作示范.求刘师傅讲座及加工2个零件作示范的总时间不超过100分钟的概率.22.(10分)如图,为等腰直角三角形,,D为AC上一点,将沿BD折起,得到三棱锥,且使得在底面BCD的投影E在线段BC上,连接AE.(1)证明:;(2)若,求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.【详解】展开式中的项为常数项,有3种情况:(1)5个括号都出1,即;(2)两个括号出,两个括号出,一个括号出1,即;(3)一个括号出,一个括号出,三个括号出1,即;所以展开项中的常数项为,故选B.【点睛】本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.2、D【解析】

利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【详解】由所以,所以原式所以原式故故选:D【点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.3、B【解析】试题分析:由集合A中的函数y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函数考点:交集及其运算.4、C【解析】

根据三角函数图像的变换与参数之间的关系,即可容易求得.【详解】为得到,将横坐标伸长到原来的2倍(纵坐标不变),故可得;再将向左平移个单位长度,故可得.故选:C.【点睛】本题考查三角函数图像的平移,涉及诱导公式的使用,属基础题.5、B【解析】

由函数解析式中含绝对值,所以去绝对值并画出函数图象,结合图象即可求得在上的最大值和最小值.【详解】依题意,,作出函数的图象如下所示;由函数图像可知,当时,有最大值,当时,有最小值.故选:B.【点睛】本题考查了绝对值函数图象的画法,由函数图象求函数的最值,属于基础题.6、B【解析】

根据程序框图列举出程序的每一步,即可得出输出结果.【详解】输入,不成立,是偶数成立,则,;不成立,是偶数不成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;成立,跳出循环,输出i的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.7、A【解析】

利用的值域为,求出m,再变形,利用1的代换,即可求出的最小值.【详解】解:∵的值域为,∴,∴,∴,当且仅当时取等号,∴的最小值为.故选:A.【点睛】本题主要考查了对数复合函数的值域运用,同时也考查了基本不等式中“1的运用”,属于中档题.8、D【解析】令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项==-40+80=409、D【解析】

先求出的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范围即可.【详解】因为,故,当时,,故在区间上单调递减;当时,,故在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.又,且当趋近于零时,趋近于正无穷;对函数,当时,;根据题意,对,且,使得成立,只需,即可得,解得.故选:D.【点睛】本题考查利用导数研究由方程根的个数求参数范围的问题,涉及利用导数研究函数单调性以及函数值域的问题,属综合困难题.10、B【解析】

通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值.【详解】解:由题意可知,抛物线的准线方程为,,过作垂直直线于,由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大,设在的方程为:,所以,解得:,所以,解得,所以,.故选:.【点睛】本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题.11、B【解析】

根据题意计算,,,解不等式得到答案.【详解】∵是以1为首项,2为公差的等差数列,∴.∵是以1为首项,2为公比的等比数列,∴.∴.∵,∴,解得.则当时,的最大值是9.故选:.【点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.12、B【解析】

由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】

利用二项展开式的通项公式,二项式系数的性质,求得的值.【详解】展开式通项为:且的展开式中的系数比的系数大,即:解得:(舍去)或本题正确结果:【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14、【解析】

由题,得满足题目要求的情况有,①有一个数字4,另外两个数字从1,2,3里面选和②有两个数字4,另外一个数字从1,2,3里面选,由此即可得到本题答案.【详解】满足题目要求的情况可以分成2大类:①有一个数字4,另外两个数字从1,2,3里面选,一共有种情况;②有两个数字4,另外一个数字从1,2,3里面选,一共有种情况,又从中任意摸取3个小球,有种情况,所以取出的3个小球中数字最大的为4的概率.故答案为:【点睛】本题主要考查古典概型与组合的综合问题,考查学生分析问题和解决问题的能力.15、20【解析】

根据系统抽样的定义将56人按顺序分成4组,每组14人,则1至14号为第一组,15至28号为第二组,29号至42号为第三组,43号至56号为第四组.而学号6,34,48分别是第一、三、四组的学号,所以还有一个同学应该是15+6-1=20号,故答案为20.16、18【解析】

根据函数单调性的性质,分一次函数和一元二次函数的对称性和单调区间的关系建立不等式,利用基本不等式求解即可.【详解】解:①当时,,在区间上单调递减,则,即,则.②当时,,函数开口向上,对称轴为,因为在区间上单调递减,则,因为,则,整理得,又因为,则.所以即,所以当且仅当时等号成立.综上所述,的最大值为18.故答案为:18【点睛】本题主要考查一次函数与二次函数的单调性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)利用正弦定理将目标式边化角,结合倍角公式,即可整理化简求得结果;(2)由面积公式,可以求得,再利用余弦定理,即可求得,结合即可求得周长.【详解】(1)由题设得.由正弦定理得∵∴,所以或.当,(舍)故,解得.(2),从而.由余弦定理得.解得.∴.故三角形的周长为.【点睛】本题考查由余弦定理解三角形,涉及面积公式,正弦的倍角公式,应用正弦定理将边化角,属综合性基础题.18、(1)李某月应缴纳的个税金额为元,(2)分布列详见解析,期望为1150元【解析】

(1)分段计算个人所得税额;

(2)随机变量X的所有可能的取值为990,1190,1390,1590,分别求出各值对应的概率,列出分布列,求期望即可.【详解】解:(1)李某月应纳税所得额(含税)为:29600−5000−1000−2000=21600元

不超过3000的部分税额为3000×3%=90元

超过3000元至12000元的部分税额为9000×10%=900元,

超过12000元至25000元的部分税额为9600×20%=1920元

所以李某月应缴纳的个税金额为90+900+1920=2910元,

(2)有一个孩子需要赡养老人应纳税所得额(含税)为:20000−5000−1000−2000=12000元,

月应缴纳的个税金额为:90+900=990元

有一个孩子不需要赡养老人应纳税所得额(含税)为:20000−5000−1000=14000元,

月应缴纳的个税金额为:90+900+400=1390元;

没有孩子需要赡养老人应纳税所得额(含税)为:20000−5000−2000=13000元,

月应缴纳的个税金额为:90+900+200=1190元;

没有孩子不需要赡养老人应纳税所得额(含税)为:20000−5000=15000元,

月应缴纳的个税金额为:90+900+600=1590元;

所以随机变量X的分布列为:990119013901590.【点睛】本题考查了分段函数的应用与函数值计算,考查了随机变量的概率分布列与数学期望,属于中档题.19、(1)(2)当n为偶数时,;当n为奇数时,.(3)【解析】

(1)根据,讨论与两种情况,即可求得数列的通项公式;(2)由(1)利用递推公式及累加法,即可求得当n为奇数或偶数时的通项公式.也可利用数学归纳法,先猜想出通项公式,再用数学归纳法证明.(3)分类讨论,当n为奇数或偶数时,分别求得的最大值,即可求得的取值范围.【详解】(1)由题意可知,.当时,,当时,也满足上式.所以.(2)解法一:由(1)可知,即.当时,,①当时,,所以,②当时,,③当时,,所以,④……当时,n为偶数当时,n为偶数所以以上个式子相加,得.又,所以当n为偶数时,.同理,当n为奇数时,,所以,当n为奇数时,.解法二:猜测:当n为奇数时,.猜测:当n为偶数时,.以下用数学归纳法证明:,命题成立;假设当时,命题成立;当n为奇数时,,当时,n为偶数,由得故,时,命题也成立.综上可知,当n为奇数时同理,当n为偶数时,命题仍成立.(3)由(2)可知.①当n为偶数时,,所以随n的增大而减小从而当n为偶数时,的最大值是.②当n为奇数时,,所以随n的增大而增大,且.综上,的最大值是1.因此,若对于任意的,不等式恒成立,只需,故实数的取值范围是.【点睛】本题考查了累加法求数列通项公式的应用,分类讨论奇偶项的通项公式及求和方法,数学归纳法证明数列的应用,数列的单调性及参数的取值范围,属于难题.20、(Ⅰ)(Ⅱ)【解析】

(1)由抛物线的性质,当轴时,最小;(2)设点,,分别代入抛物线方程和得到三个方程,消去,得到关于的一元二次方程,利用判别式即可求出的范围.【详解】解:(1)由抛物线的标准方程,,根据抛物线的性质,当轴时,最小,最小值为,即为4.(2)由题意,设点,,其中,.则,①,②因为,,,所以.③由①②③,得,由,且,得,解不等式,得点纵坐标的范围为.【点睛】本题主要考查抛物线的方程和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论