中考数学二轮复习冲刺第16讲正多边形与圆(知识精讲+真题练+模拟练+自招练)(原卷版)_第1页
中考数学二轮复习冲刺第16讲正多边形与圆(知识精讲+真题练+模拟练+自招练)(原卷版)_第2页
中考数学二轮复习冲刺第16讲正多边形与圆(知识精讲+真题练+模拟练+自招练)(原卷版)_第3页
中考数学二轮复习冲刺第16讲正多边形与圆(知识精讲+真题练+模拟练+自招练)(原卷版)_第4页
中考数学二轮复习冲刺第16讲正多边形与圆(知识精讲+真题练+模拟练+自招练)(原卷版)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第16讲正多边形与圆(知识精讲+真题练+模拟练+自招练)【考纲要求】了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识导图】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1)正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径.)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:

(1)任何正多边形都有一个外接圆.

(2)正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是;所以正n边形的中心角等于它的外角.

(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.弓形的面积(1)由弦及其所对的劣弧组成的图形,S弓形=S扇形-S△OAB;(2)由弦及其所对的优弧组成的弓形,S弓形=S扇形+S△OAB.··OAB·ABOm·ABOm要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】题型一、正多边形有关计算 例1.如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的⊙O与弧AE,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O,则AD的长为() A.4 B.QUOTEC.QUOTE D.5【变式1】如图,两个相同的正六边形,其中一个正多边形的顶点在另一个正多边形外接圆圆心O处.求重叠部分面积与阴影部分面积之比.【变式2】已知:正十边形的半径是R,求证:它的边长为.题型二、正多边形与圆综合运用例2.如图,AG是正八边形ABCDEFGH的一条对角线.(1)在剩余的顶点B、C、D、E、F、H中,连接两个顶点,使连接的线段与AG平行,并说明理由;(2)两边延长AB、CD、EF、GH,使延长线分别交于点P、Q、M、N,若AB=2,求四边形PQMN的面积.【变式】如图所示,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是()A.B.C.D.例3.如图,已知在⊙O中,,AC是⊙O的直径,AC⊥BD于F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请你出这个圆锥的底面圆的半径.【中考过关真题练】一.选择题(共7小题)1.(2022•安顺)如图,在平面直角坐标系中,将边长为2的正六边形OABCDE绕点O顺时针旋转n个45°,得到正六边形OAnBn∁nDnEn,当n=2022时,正六边形OAnBn∁nDnEn的顶点Dn的坐标是()A.(﹣,﹣3) B.(﹣3,﹣) C.(3,﹣) D.(﹣,3)2.(2022•安顺)如图,边长为的正方形ABCD内接于⊙O,PA,PD分别与⊙O相切于点A和点D,PD的延长线与BC的延长线交于点E,则图中阴影部分的面积为()A.5﹣π B.5﹣ C.﹣ D.﹣3.(2022•绵阳)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受了中国人的浪漫.如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,若AB与x轴垂直,顶点A的坐标为(2,﹣3),则顶点C的坐标为()A.(2﹣2,3) B.(0,1+2) C.(2﹣,3) D.(2﹣2,2+)4.(2022•青岛)如图,正六边形ABCDEF内接于⊙O,点M在上,则∠CME的度数为()A.30° B.36° C.45° D.60°5.(2022•内江)如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为()A.4, B.3,π C.2, D.3,2π6.(2022•雅安)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为()A.3 B. C. D.37.(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为()A. B. C.3 D.2二.填空题(共6小题)8.(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.9.(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.10.(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.11.(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.12.(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大于OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA=1,则,AE,AB所围成的阴影部分面积为.13.(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.三.解答题(共1小题)14.(2022•金华)如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题:作法如图2.1.作直径AF.2.以F为圆心,FO为半径作圆弧,与⊙O交于点M,N.3.连接AM,MN,NA.(1)求∠ABC的度数.(2)△AMN是正三角形吗?请说明理由.(3)从点A开始,以DN长为边长,在⊙O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.

【中考挑战满分模拟练】一.填空题(共6小题)1.(2023•抚州一模)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有.2.(2023•琼山区一模)一个正n边形的中心角为36°,则它的一个内角的度数为.3.(2023•汉阳区校级一模)线段AB是圆内接正十二边形的一条边,则AB边所对的圆周角是°.4.(2023•雁塔区校级模拟)如图,正六边形ABCDEF内接于⊙O.若该正六边形的边长为5,则⊙O的面积等于.5.(2023•泸县校级模拟)已知⊙O的半径为1,则它的内接正三角形边心距为.6.(2023•定远县校级一模)如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则∠AOC的度数为.

【名校自招练】一.选择题(共9小题)1.(2017•双流区校级自主招生)如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4) B.(45°,4) C.(60°,2) D.(50°,2)2.(2018•蔡甸区校级自主招生)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A. B. C. D.3.(2019•顺庆区校级自主招生)在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径为()A.50 B.40 C. D.1004.(2020•和平区校级自主招生)如图是边长为2的正方形及其内切圆和外接圆,则图中阴影部分的总面积为()A.3π﹣4 B.π+4 C.5π﹣4 D.3π+45.(2021•和平区校级自主招生)我国魏晋时期数学家刘徽在公元263年撰写的《九章算术》中提出了一种估计π的方法,也就是“割圆术”:用圆内接正6n边形的周长估计圆的周长进而估计π的近似值,且n越大时圆内接正6n边形的周长越接近圆的周长,估计值越接近π.当n=1时,如图,用这种方法估计此时π的近似值为()A.3 B.3.1 C.3.14 D.3.1416.(2019•汉阳区校级自主招生)在一节数学实践活动课上,老师拿出三个边长都为40mm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径为(单位:mm)()A.80 B.40 C.25 D.1007.(2018•青羊区校级自主招生)将正多边形ABCDEF放入直角坐标系中,顶点B,D,E的坐标分别为(n,m),(﹣n,m),(a,b),则点A的坐标可以为()A.(﹣m,﹣n) B.(m,﹣n) C.(﹣a,b) D.(﹣b,﹣a)8.(2017•平阳县自主招生)如图,正方形ABCD和正三角形AEF都内接于⊙O,EF与BC,CD分别相交于点G,H,则的值为()A. B. C. D.29.(2020•温江区校级自主招生)“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣“,早在1800多年前,魏晋时期的数学家刘徽首创“割圆术“,用圆内接正多边形的面积去无限逼近圆面积.如图,连接⊙O的内接正十二边形顶点得到AB,BC,若OA=2,则阴影部分的面积为()A.2 B.2 C.π D.二.填空题(共8小题)10.(2019•宝山区校级自主招生)如图,ABCDE是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为.11.(2017•双流区校级自主招生)一个半径为1cm的圆,在边长为6cm的正六边形内任意挪动(圆可以与正六边形的边相切),则圆在正六边形内不能达到的部分的面积为cm2.12.(2021•黄州区校级自主招生)如图,设ABCDE是正五边形,五角星ACEBD(阴影部分)的面积为2,设AC与BE的交点为P,BD与CE的交点为Q,则四边形APQD的面积等于.13.(2020•洪山区校级自主招生)如图,以正六边形ABCDEF的对角线BD为边,向右作等边三角形BDG,若四边形BCDG(图中阴影部分)的面积为6,则五边形ABDEF的面积为.14.(2017•江阴市自主招生)如图,已知M(3,3),⊙M的半径为2,四边形ABCD是⊙M的内接正方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论