版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第04讲一次方程及方程组【中考过关真题练】一.等式的性质(共1小题)1.(2022•青海)根据等式的性质,下列各式变形正确的是()A.若=,则a=b B.若ac=bc,则a=b C.若a2=b2,则a=b D.若﹣x=6,则x=﹣2【分析】根据等式的性质,进行计算逐一判断即可解答.【解答】解:A、若=,则a=b,故A符合题意;B、若ac=bc(c≠0),则a=b,故B不符合题意;C、若a2=b2,则a=±b,故C不符合题意;D、﹣x=6,则x=﹣18,故D不符合题意;故选:A.【点评】本题考查了等式的性质,熟练掌握等式的性质是解题的关键.二.解一元一次方程(共1小题)2.(2022•黔西南州)小明解方程﹣1=的步骤如下:解:方程两边同乘6,得3(x+1)﹣1=2(x﹣2)①去括号,得3x+3﹣1=2x﹣2②移项,得3x﹣2x=﹣2﹣3+1③合并同类项,得x=﹣4④以上解题步骤中,开始出错的一步是()A.① B.② C.③ D.④【分析】对题目的解题过程逐步分析,即可找出出错的步骤.【解答】解:方程两边同乘6应为:3(x+1)﹣6=2(x﹣2),∴出错的步骤为:①,故选:A.【点评】本题考查解一元一次方程,解题关键在于能准确观察出出错的步骤.三.一元一次方程的应用(共5小题)3.(2022•河北)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是()A.依题意3×120=x﹣120 B.依题意20x+3×120=(20+1)x+120 C.该象的重量是5040斤 D.每块条形石的重量是260斤【分析】利用题意找出等量关系,将等量关系中的量用已知数和未知数的代数式替换即可得出结论.【解答】解:由题意得出等量关系为:20块等重的条形石的重量+3个搬运工的体重和=21块等重的条形石的重量+1个搬运工的体重,∵已知搬运工体重均为120斤,设每块条形石的重量是x斤,∴20x+3×120=(20+1)x+120,∴A选项不正确,B选项正确;由题意:大象的体重为20×240+360=5160斤,∴C选项不正确;由题意可知:一块条形石的重量=2个搬运工的体重,∴每块条形石的重量是240斤,∴D选项不正确;综上,正确的选项为:B.故选:B.【点评】本题主要考查了一元一次方程的应用,利用题意正确找出等量关系是解题的关键.4.(2020•呼和浩特)中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A.102里 B.126里 C.192里 D.198里【分析】设第六天走的路程为x里,则第五天走的路程为2x里,依此往前推,第一天走的路程为32x里,根据前六天的路程之和为378里,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设第六天走的路程为x里,则第五天走的路程为2x里,依此往前推,第一天走的路程为32x里,依题意,得:x+2x+4x+8x+16x+32x=378,解得:x=6.32x=192,6+192=198,故选:D.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.5.(2019•牡丹江)夏季到来,商家为清理库存,决定对部分春季商品进行打折销售.已知某服装一件进价为100元,若按标价打五折出售,仍可获利30%,则该服装的标价是260元.【分析】直接利用进价与利润和打折与标价之间的关系列出方程,解方程即可求解.【解答】解:设该服装的标价是x元,依题意有:0.5x=100(1+30%),解得x=260.故答案为:260.【点评】此题主要考查了一元一次方程的应用,正确理解进价与利润和打折与标价之间的关系是解题关键.6.(2022•重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【分析】(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,利用路程=速度×时间,结合甲追上乙时二者的行驶路程相等,即可得出关于x的一元一次方程,解之即可求出乙骑行的速度,再将其代入1.2x中即可求出甲骑行的速度;(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,利用时间=路程÷速度,结合乙比甲多用20分钟,即可得出关于y的分式方程,解之经检验后即可求出乙骑行的速度,再将其代入1.2y中即可求出甲骑行的速度.【解答】解:(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,依题意得:×1.2x=2+x,解得:x=20,∴1.2x=1.2×20=24.答:甲骑行的速度为24千米/时.(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,依题意得:﹣=,解得:y=15,经检验,y=15是原方程的解,且符合题意,∴1.2y=1.2×15=18.答:甲骑行的速度为18千米/时.【点评】本题考查了一元一次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出分式方程.7.(2022•南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)种类真丝衬衣真丝围巾进价(元/件)a80售价(元/件)300100(1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?【分析】(1)利用总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出a的值;(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,根据真丝围巾进货件数不低于真丝衬衣件数的2倍,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,设两种商品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于x的函数关系式,再利用一次函数的性质,即可解决最值问题;(3)设每件真丝围巾降价y元,利用总利润=每件的销售利润×销售数量,结合要保证销售利润不低于原来最大利润的90%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)依题意得:50a+80×25=15000,解得:a=260.答:a的值为260.(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,依题意得:300﹣x≥2x,解得:x≤100.设两种商品全部售出后获得的总利润为w元,则w=(300﹣260)x+(100﹣80)(300﹣x)=20x+6000.∵20>0,∴w随x的增大而增大,∴当x=100时,w取得最大值,最大值=20×100+6000=8000,此时300﹣x=300﹣100=200.答:当购进真丝衬衣100件,真丝围巾200件时,才能使本次销售获得的利润最大,最大利润是8000元.(3)设每件真丝围巾降价y元,依题意得:(300﹣260)×100+(100﹣80)××200+(100﹣y﹣80)××200≥8000×90%,解得:y≤8.答:每件真丝围巾最多降价8元.【点评】本题考查了一元一次方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,找出w关于x的函数关系式;(3)根据各数量之间的关系,正确列出一元一次不等式.四.二元一次方程的应用(共3小题)8.(2022•齐齐哈尔)端午节前夕,某食品加工厂准备将生产的粽子装入A、B两种食品盒中,A种食品盒每盒装8个粽子,B种食品盒每盒装10个粽子,若现将200个粽子分别装入A、B两种食品盒中(两种食品盒均要使用并且装满),则不同的分装方式有()A.2种 B.3种 C.4种 D.5种【分析】根据题意列方程,求其正整数解.【解答】解:设A种食品盒x个,B种食品盒y个,根据题意得:8x+10y=200,∴y=20﹣0.8x,∴方程的正整数解为:,,,.故选:C.【点评】本题考查二元一次方程的应用,并求其特殊解的问题.9.(2016•齐齐哈尔)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或5【分析】设该队胜x场,平y场,则负(6﹣x﹣y)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.【解答】解:设该队胜x场,平y场,则负(6﹣x﹣y)场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C.【点评】本题主要考查二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.10.(2018•黄石)小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.小光的策略是:石头、剪子、布、石头、剪子、布、……小王的策略是:剪子、随机、剪子、随机……(说明:随机指石头、剪子、布中任意一个)例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表局数123456789小光实际策略石头剪子布石头剪子布石头剪子布小王实际策略剪子布剪子石头剪子剪子剪子石头剪子小光得分33﹣100﹣13﹣1﹣1小王得分﹣1﹣13003﹣133已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为90分.【分析】观察二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿﹣1分,第五局小光拿0分,进而可得出五十局中可预知的小光胜9局、平8局、负8局,设其它二十五局中,小光胜了x局,负了y局,则平了(25﹣x﹣y)局,根据50局比赛后小光总得分为﹣6分,即可得出关于x、y的二元一次方程,由x、y、(25﹣x﹣y)均非负,可得出x=0、y=25,再由胜一局得3分、负一局得﹣1分、平不得分,可求出小王的总得分.【解答】解:由二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿﹣1分,第五局小光拿0分.∵50÷6=8(组)……2(局),∴(3﹣1+0)×8+3=19(分).设其它二十五局中,小光胜了x局,负了y局,则平了(25﹣x﹣y)局,根据题意得:19+3x﹣y=﹣6,∴y=3x+25.∵x、y、(25﹣x﹣y)均非负,∴x=0,y=25,∴小王的总得分=(﹣1+3+0)×8﹣1+25×3=90(分).故答案为:90.【点评】本题考查了二元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出二元一次方程是解题的关键.五.解二元一次方程组(共1小题)11.(2022•淄博)解方程组:.【分析】利用加减消元法或代入消元法解二元一次方程组即可.【解答】解:整理方程组得,①×2﹣②得﹣7y=﹣7,y=1,把y=1代入①得x﹣2=3,解得x=5,∴方程组的解为.【点评】本题考查了解二元一次方程组,做题关键是掌握加减消元法和代入消元法解二元一次方程组.六.由实际问题抽象出二元一次方程组(共3小题)12.(2020•随州)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x只,兔有y只,则根据题意,下列方程组中正确的是()A. B. C. D.【分析】根据“鸡的数量+兔的数量=35,鸡的脚的数量+兔子的脚的数量=94”可列方程组.【解答】解:设鸡有x只,兔有y只,根据题意,可列方程组为,故选:A.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.13.(2018•朝阳)鸡兔同笼,从上面数,有20个头;从下面数,有60条腿,设鸡有x只,兔有y只,则下列方程组正确的是()A. B. C. D.【分析】设鸡有x只,兔有y只,根据鸡和兔共有20个头60条腿,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设鸡有x只,兔有y只,依题意,得:.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.14.(2021•阿坝州)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题,”今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”若设鸡有x只,兔有y只,则列出的方程组为(列出方程组即可,不求解).【分析】根据等量关系:上有三十五头,下有九十四足,即可列出方程组.【解答】解:设鸡有x只,兔有y只,由题意得:.故答案为.【点评】此题考查了由实际问题抽象出二元一次方程组,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.七.二元一次方程组的应用(共12小题)15.(2022•湖北)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货23.5吨.【分析】根据题意列二元一次方程组,再求有关代数式的值.【解答】解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,根据题意得:,得:4x+3y=23.5;故答案为:23.5.【点评】本题考查得是二元一次方程的应用,审题、列方程是解决本题的关键.16.(2022•海南)我省某村委会根据“十四五”规划的要求,打造乡村品牌,推销有机黑胡椒和有机白胡椒.已知每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元,求每千克有机黑胡椒和每千克有机白胡椒的售价.【分析】设每千克有机黑胡椒的售价为x元,每千克有机白胡椒的售价为y元,根据“每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设每千克有机黑胡椒的售价为x元,每千克有机白胡椒的售价为y元,依题意得:,解得:.答:每千克有机黑胡椒的售价为50元,每千克有机白胡椒的售价为60元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.(2022•黑龙江)学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A种跳绳和5根B种跳绳共需175元;购进15根A种跳绳和10根B种跳绳共需300元.(1)求购进一根A种跳绳和一根B种跳绳各需多少元?(2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?【分析】(1)设购进一根A种跳绳需x元,购进一根B种跳绳需y元,根据“购进10根A种跳绳和5根B种跳绳共需175元:购进15根A种跳绳和10根B种跳绳共需300元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买A种跳绳m根,则购买B种跳绳(45﹣m)根,利用总价=单价×数量,结合总价不少于548元且不多于560元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出各购买方案;(3)设购买跳绳所需总费用为w元,利用总价=单价×数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.【解答】解:(1)设购进一根A种跳绳需x元,购进一根B种跳绳需y元,依题意得:,解得:.答:购进一根A种跳绳需10元,购进一根B种跳绳需15元.(2)∵该班级计划购买A、B两种跳绳共45根,且购买A种跳绳m根,∴购买B种跳绳(45﹣m)根.依题意得:,解得:23≤m≤25.4,又∵m为整数,∴m可以取23,24,25,∴共有3种购买方案,方案1:购买23根A种跳绳,22根B种跳绳;方案2:购买24根A种跳绳,21根B种跳绳;方案3:购买25根A种跳绳,20根B种跳绳.(3)设购买跳绳所需总费用为w元,则w=10m+15(45﹣m)=﹣5m+675.∵﹣5<0,∴w随m的增大而减小,∴当m=25时,w取得最小值,最小值=﹣5×25+675=550.答:在(2)的条件下,购买方案3需要的总费用最少,最少费用是550元.【点评】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于m的函数关系式.18.(2022•福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.【分析】(1)设购买绿萝x盆,吊兰y盆,利用总价=单价×数量,结合购进两种绿植46盆共花费390元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买绿萝m盆,则购买吊兰(46﹣m)盆,根据购进绿萝盆数不少于吊兰盆数的2倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设购买两种绿植的总费用为w元,利用总价=单价×数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.【解答】解:(1)设购买绿萝x盆,吊兰y盆,依题意得:,解得:.∵8×2=16,16<38,∴符合题意.答:购买绿萝38盆,吊兰8盆.(2)设购买绿萝m盆,则购买吊兰(46﹣m)盆,依题意得:m≥2(46﹣m),解得:m≥.设购买两种绿植的总费用为w元,则w=9m+6(46﹣m)=3m+276,∵3>0,∴w随m的增大而增大,又∵m≥,且m为整数,∴当m=31时,w取得最小值,最小值=3×31+276=369.答:购买两种绿植总费用的最小值为369元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式.19.(2022•雅安)某商场购进A,B两种商品,已知购进3件A商品和5件B商品费用相同,购进3件A商品和1件B商品总费用为360元.(1)求A,B两种商品每件进价各为多少元?(列方程或方程组求解)(2)若该商场计划购进A,B两种商品共80件,其中A商品m件.若A商品按每件150元销售,B商品按每件80元销售,求销售完A,B两种商品后获得总利润w(元)与m(件)的函数关系式.【分析】(1)根据题意列方程组,并求解.(2)根据(1)的结论,列函数关系式【解答】解:(1)A商品每件的进价为x元,B商品每件的进价为y元,根据题意得:.解得:;答:A商品每件的进价为100元,B商品每件的进价为60元.(2)∵A商品m件,∴B商品(80﹣m)件,∴w=(150﹣100)m+(80﹣60)(80﹣m)=30m+1600.【点评】本题考查二元一次方程组的应用,及列函数表达式,因此审题列方程组是解题的关键.20.(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【分析】设有x人,该书单价y元,根据“如果每人出8元,则多了3元;如果每人出7元,则少了4元钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设学生有x人,该书单价y元,根据题意得:,解得:.答:学生有7人,该书单价53元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.(2021•黄石)我国传统数学名著《九章算术》记载:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”译文:有若干只鸡与兔在同一个笼子里,从上面数有35个头,从下面数有94只脚,问笼中各有几只鸡和兔?根据以上译文,回答以下问题:(1)笼中鸡、兔各有多少只?(2)若还是94只脚,但不知道头多少个,笼中鸡兔至少30只且不超过40只.鸡每只值80元,兔每只值60元,问这笼鸡兔最多值多少元?最少值多少元?【分析】(1)设笼中鸡有x只,兔有y只,根据“从上面数有35个头,从下面数有94只脚”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设笼中鸡有m只,则兔有只,根据笼中鸡兔至少30只且不超过40只,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,设这笼鸡兔共值w元,根据总价=单价×数量,即可得出关于w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设笼中鸡有x只,兔有y只,依题意得:,解得:.答:笼中鸡有23只,兔有12只.(2)设笼中鸡有m只,则兔有只,依题意得:,解得:13≤m≤33.设这笼鸡兔共值w元,则w=80m+60×=50m+1410.∵50>0,∴w随m的增大而增大,∴当m=13时,w取得最小值,最小值=50×13+1410=2060;当m=33时,w取得最大值,最大值=50×33+1410=3060.答:这笼鸡兔最多值3060元,最少值2060元.【点评】本题考查了二元一次方程组的应用、一元一次不等式组的应用、数学常识以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.22.(2019•娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表所示:类别成本价(元/箱)销售价(元/箱)甲2535乙3548求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?【分析】(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,根据该商场用14500元购进甲、乙两种矿泉水共500箱,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=单箱利润×销售数量,即可求出结论.【解答】解:(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,依题意,得:,解得:.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(35﹣25)×300+(48﹣35)×200=5600(元).答:该商场售完这500箱矿泉水,可获利5600元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【分析】(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据“甲乙两队合作150天完成土方量120万立方,甲队施工110天、乙队施工150天完成土方量103.2万立方”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据题意得:,解得:.答:甲队原计划平均每天的施工土方量为0.42万立方,乙队原计划平均每天的施工土方量为0.38万立方.(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据题意得:110×0.42+(40+110)×(0.38+a)≥120,解得:a≥0.112.答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出关于a的一元一次不等式.24.(2017•乌鲁木齐)我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?【分析】设笼中鸡有x只,兔有y只,本题中的等量关系有:鸡头+兔头=35头;鸡足+兔足=94足,需要注意的是,一只鸡有一头两足,一只兔有一头四足.【解答】解:设笼中鸡有x只,兔有y只,由题意得:,解得.答:笼中鸡有23只,兔有12只.【点评】本题考查二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.需要注意的是,一只鸡有一头两足,一只兔有一头四足.25.(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国石油大学(北京)《网络及信息安全技术》2023-2024学年第一学期期末试卷
- 长春光华学院《数据仓库理论与实践实验》2023-2024学年第一学期期末试卷
- 食品加工机械卫生级润滑产品
- 餐饮业前瞻与策略模板
- 财务团队商务礼仪模板
- 专业基础知识(给排水)-(给水排水)《专业基础知识》模拟试卷1
- 生物地理学探究模板
- 商务礼仪讲解模板
- 青少年健身指南模板
- 诚信考试-国旗下讲话发言稿
- 老年人的安全保护及预防措施课件
- ICU镇痛镇静治疗知情同意书
- 政治表现及具体事例三条经典优秀范文三篇
- 高考诗歌鉴赏专题复习:题画抒怀诗、干谒言志诗
- 2023年辽宁省交通高等专科学校高职单招(英语)试题库含答案解析
- GB/T 304.3-2002关节轴承配合
- 漆画漆艺 第三章
- CB/T 615-1995船底吸入格栅
- 光伏逆变器一课件
- 货物供应、运输、包装说明方案
- (完整版)英语高频词汇800词
评论
0/150
提交评论