苏州新区一中2025届高考考前提分数学仿真卷含解析_第1页
苏州新区一中2025届高考考前提分数学仿真卷含解析_第2页
苏州新区一中2025届高考考前提分数学仿真卷含解析_第3页
苏州新区一中2025届高考考前提分数学仿真卷含解析_第4页
苏州新区一中2025届高考考前提分数学仿真卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

苏州新区一中2025届高考考前提分数学仿真卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在R上的函数y=fx满足fx≤2x-1A. B. C. D.2.已知正方体的棱长为,,,分别是棱,,的中点,给出下列四个命题:①;②直线与直线所成角为;③过,,三点的平面截该正方体所得的截面为六边形;④三棱锥的体积为.其中,正确命题的个数为()A. B. C. D.3.定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是()A. B.C. D.以上情况均有可能4.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是()A. B. C. D.5.定义运算,则函数的图象是().A. B.C. D.6.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)7.的展开式中的系数为()A. B. C. D.8.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为()A. B. C. D.9.若,则下列不等式不能成立的是()A. B. C. D.10.在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则()A. B.C. D.11.“幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“阶幻方”是由前个正整数组成的—个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为()A.75 B.65 C.55 D.4512.在直三棱柱中,己知,,,则异面直线与所成的角为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.公比为正数的等比数列的前项和为,若,,则的值为__________.14.函数的定义域是__________.15.在平面直角坐标系中,若双曲线(,)的离心率为,则该双曲线的渐近线方程为________.16.展开式中,含项的系数为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知首项为2的数列满足.(1)证明:数列是等差数列.(2)令,求数列的前项和.18.(12分)设数列,其前项和,又单调递增的等比数列,,.(Ⅰ)求数列,的通项公式;(Ⅱ)若,求数列的前n项和,并求证:.19.(12分)已知函数(,)满足下列3个条件中的2个条件:①函数的周期为;②是函数的对称轴;③且在区间上单调.(Ⅰ)请指出这二个条件,并求出函数的解析式;(Ⅱ)若,求函数的值域.20.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数),圆的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求和的极坐标方程;(2)过且倾斜角为的直线与交于点,与交于另一点,若,求的取值范围.21.(12分)数列满足,是与的等差中项.(1)证明:数列为等比数列,并求数列的通项公式;(2)求数列的前项和.22.(10分)选修4—5;不等式选讲.已知函数.(1)若的解集非空,求实数的取值范围;(2)若正数满足,为(1)中m可取到的最大值,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

根据y=fx+1为奇函数,得到函数关于1,0中心对称,排除AB,计算f1.5≤【详解】y=fx+1为奇函数,即fx+1=-f-x+1,函数关于f1.5≤2故选:D.【点睛】本题考查了函数图像的识别,确定函数关于1,0中心对称是解题的关键.2、C【解析】

画出几何体的图形,然后转化判断四个命题的真假即可.【详解】如图;连接相关点的线段,为的中点,连接,因为是中点,可知,,可知平面,即可证明,所以①正确;直线与直线所成角就是直线与直线所成角为;正确;过,,三点的平面截该正方体所得的截面为五边形;如图:是五边形.所以③不正确;如图:三棱锥的体积为:由条件易知F是GM中点,所以,而,.所以三棱锥的体积为,④正确;故选:.【点睛】本题考查命题的真假的判断与应用,涉及空间几何体的体积,直线与平面的位置关系的应用,平面的基本性质,是中档题.3、B【解析】

由已知可求得函数的周期,根据周期及偶函数的对称性可求在上的单调性,结合三角函数的性质即可比较.【详解】由可得,即函数的周期,因为在区间上单调递减,故函数在区间上单调递减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角,所以且即,所以即,.故选:.【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键.4、C【解析】

根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题.5、A【解析】

由已知新运算的意义就是取得中的最小值,因此函数,只有选项中的图象符合要求,故选A.6、C【解析】

先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.【详解】因为N={x|x(x+3)≤0}={x|-3≤x≤0},又因为M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故选:C【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.7、C【解析】由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.8、A【解析】

根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.【详解】当为奇数时,,则数列奇数项是以为首项,以为公差的等差数列,当为偶数时,,则数列中每个偶数项加是以为首项,以为公比的等比数列.所以.故选:A【点睛】本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.9、B【解析】

根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.10、B【解析】

设,则,,由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.【详解】设,则,,因为B,P,D三点共线,C,P,E三点共线,所以,,所以,.故选:B.【点睛】本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.11、B【解析】

计算的和,然后除以,得到“5阶幻方”的幻和.【详解】依题意“5阶幻方”的幻和为,故选B.【点睛】本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.12、C【解析】

由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角.【详解】连接,,如图:又,则为异面直线与所成的角.因为且三棱柱为直三棱柱,∴∴面,∴,又,,∴,∴,解得.故选C【点睛】考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、56【解析】

根据已知条件求等比数列的首项和公比,再代入等比数列的通项公式,即可得到答案.【详解】,,.故答案为:.【点睛】本题考查等比数列的通项公式和前项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.14、【解析】由,得,所以,所以原函数定义域为,故答案为.15、【解析】

利用,解出,即可求出双曲线的渐近线方程.【详解】,且,,,该双曲线的渐近线方程为:.故答案为:.【点睛】本题考查了双曲线离心率与渐近线方程,考查了双曲线基本量的关系,考查了运算能力,属于基础题.16、2【解析】

变换得到,展开式的通项为,计算得到答案.【详解】,的展开式的通项为:.含项的系数为:.故答案为:.【点睛】本题考查了二项式定理的应用,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】

(1)由原式可得,等式两端同时除以,可得到,即可证明结论;(2)由(1)可求得的表达式,进而可求得的表达式,然后求出的前项和即可.【详解】(1)证明:因为,所以,所以,从而,因为,所以,故数列是首项为1,公差为1的等差数列.(2)由(1)可知,则,因为,所以,则.【点睛】本题考查了等差数列的证明,考查了等差数列及等比数列的前项和公式的应用,考查了学生的计算求解能力,属于中档题.18、(1),;(2)详见解析.【解析】

(1)当时,,当时,,当时,也满足,∴,∵等比数列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,显然数列是递增数列,∴,即.)19、(Ⅰ)只有①②成立,;(Ⅱ).【解析】

(Ⅰ)依次讨论①②成立,①③成立,②③成立,计算得到只有①②成立,得到答案.(Ⅱ)得到,得到函数值域.【详解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,则,,,若①③成立,则,,不合题意,若②③成立,则,,与③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由题意得,,所以函数的值域为.【点睛】本题考查了三角函数的周期,对称轴,单调性,值域,表达式,意在考查学生对于三角函数知识的综合应用.20、(1);(2)【解析】

(1)直接利用转换公式,把参数方程,直角坐标方程与极坐标方程进行转化;(2)利用极坐标方程将转化为三角函数求解即可.【详解】(1)因为,所以的普通方程为,又,,,的极坐标方程为,的方程即为,对应极坐标方程为.(2)由己知设,,则,,所以,又,,当,即时,取得最小值;当,即时,取得最大值.所以,的取值范围为.【点睛】本题主要考查了直角坐标方程,参数方程与极坐标方程的互化,三角函数的值域求解等知识,考查了学生的运算求解能力.21、(1)见解析,(2)【解析】

(1)根据等差中项的定义得,然后构造新等比数列,写出的通项即可求(2)根据(1)的结果,分组求和即可【详解】解:(1)由已知可得,即,可化为,故数列是以为首项,2为公比的等比数列.即有,所以.(2)由(1)知,数列的通项为:,故.【点睛】考查等差中项的定义和分组求和的方法;中档题.22、(1);(2)见解析.【解析】试题分析:(1)讨论三种情况去绝对值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论