版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西壮族自治区普通高中2025届高三下学期第五次调研考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,,则()A.1 B. C.2 D.32.已知定义在上的函数,若函数为偶函数,且对任意,,都有,若,则实数的取值范围是()A. B. C. D.3.如图,在中,,是上一点,若,则实数的值为()A. B. C. D.4.已知函数的图象在点处的切线方程是,则()A.2 B.3 C.-2 D.-35.若x,y满足约束条件则z=的取值范围为()A.[] B.[,3] C.[,2] D.[,2]6.设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为()A. B. C. D.7.已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为()A. B. C. D.8.已知复数,其中为虚数单位,则()A. B. C.2 D.9.正四棱锥的五个顶点在同一个球面上,它的底面边长为,侧棱长为,则它的外接球的表面积为()A. B. C. D.10.已知抛物线上一点到焦点的距离为,分别为抛物线与圆上的动点,则的最小值为()A. B. C. D.11.已知数列的首项,且,其中,,,下列叙述正确的是()A.若是等差数列,则一定有 B.若是等比数列,则一定有C.若不是等差数列,则一定有 D.若不是等比数列,则一定有12.已知双曲线的右焦点为F,过右顶点A且与x轴垂直的直线交双曲线的一条渐近线于M点,MF的中点恰好在双曲线C上,则C的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,则______.14.在平面直角坐标系中,已知点,,若圆上有且仅有一对点,使得的面积是的面积的2倍,则的值为_______.15.若实数,满足不等式组,则的最小值为______.16.已知某几何体的三视图如图所示,则该几何体外接球的表面积是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四边形中,,,,沿对角线将翻折成,使得.(1)证明:;(2)求直线与平面所成角的正弦值.18.(12分)已知函数.(1)若,解关于的不等式;(2)若当时,恒成立,求实数的取值范围.19.(12分)设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.20.(12分)在边长为的正方形,分别为的中点,分别为的中点,现沿折叠,使三点重合,构成一个三棱锥.(1)判别与平面的位置关系,并给出证明;(2)求多面体的体积.21.(12分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值.22.(10分)已知函数(1)已知直线:,:.若直线与关于对称,又函数在处的切线与垂直,求实数的值;(2)若函数,则当,时,求证:①;②.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
连接AO,因为O为BC中点,可由平行四边形法则得,再将其用,表示.由M、O、N三点共线可知,其表达式中的系数和,即可求出的值.【详解】连接AO,由O为BC中点可得,,、、三点共线,,.故选:C.【点睛】本题考查了向量的线性运算,由三点共线求参数的问题,熟记向量的共线定理是关键.属于基础题.2、A【解析】
根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案.【详解】解:因为函数为偶函数,所以函数的图象关于对称,因为对任意,,都有,所以函数在上为减函数,则,解得:.即实数的取值范围是.故选:A.【点睛】本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题.3、C【解析】
由题意,可根据向量运算法则得到(1﹣m),从而由向量分解的唯一性得出关于t的方程,求出t的值.【详解】由题意及图,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故选C.【点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.4、B【解析】
根据求出再根据也在直线上,求出b的值,即得解.【详解】因为,所以所以,又也在直线上,所以,解得所以.故选:B【点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平.5、D【解析】
由题意作出可行域,转化目标函数为连接点和可行域内的点的直线斜率的倒数,数形结合即可得解.【详解】由题意作出可行域,如图,目标函数可表示连接点和可行域内的点的直线斜率的倒数,由图可知,直线的斜率最小,直线的斜率最大,由可得,由可得,所以,,所以.故选:D.【点睛】本题考查了非线性规划的应用,属于基础题.6、B【解析】
由圆过原点,知中有一点与原点重合,作出图形,由,,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积.【详解】由题意圆过原点,所以原点是圆与抛物线的一个交点,不妨设为,如图,由于,,∴,∴,,∴点坐标为,代入抛物线方程得,,∴,.故选:B.【点睛】本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解.7、D【解析】
根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.【详解】依题意有,①,②①②得,又因为,所以,在上单调递增,所以函数的单调递增区间为.故选:D.【点睛】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.8、D【解析】
把已知等式变形,然后利用数代数形式的乘除运算化简,再由复数模的公式计算得答案.【详解】解:,则.故选:D.【点睛】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.9、C【解析】
如图所示,在平面的投影为正方形的中心,故球心在上,计算长度,设球半径为,则,解得,得到答案.【详解】如图所示:在平面的投影为正方形的中心,故球心在上,,故,,设球半径为,则,解得,故.故选:.【点睛】本题考查了四棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.10、D【解析】
利用抛物线的定义,求得p的值,由利用两点间距离公式求得,根据二次函数的性质,求得,由取得最小值为,求得结果.【详解】由抛物线焦点在轴上,准线方程,则点到焦点的距离为,则,所以抛物线方程:,设,圆,圆心为,半径为1,则,当时,取得最小值,最小值为,故选D.【点睛】该题考查的是有关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目.11、C【解析】
根据等差数列和等比数列的定义进行判断即可.【详解】A:当时,,显然符合是等差数列,但是此时不成立,故本说法不正确;B:当时,,显然符合是等比数列,但是此时不成立,故本说法不正确;C:当时,因此有常数,因此是等差数列,因此当不是等差数列时,一定有,故本说法正确;D:当时,若时,显然数列是等比数列,故本说法不正确.故选:C【点睛】本题考查了等差数列和等比数列的定义,考查了推理论证能力,属于基础题.12、A【解析】
设,则MF的中点坐标为,代入双曲线的方程可得的关系,再转化成关于的齐次方程,求出的值,即可得答案.【详解】双曲线的右顶点为,右焦点为,M所在直线为,不妨设,∴MF的中点坐标为.代入方程可得,∴,∴,∴(负值舍去).故选:A.【点睛】本题考查双曲线的离心率,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意构造的齐次方程.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出,然后由模的平方转化为向量的平方,利用数量积的运算计算.【详解】由题意得,.,.,,.故答案为:.【点睛】本题考查求向量的模,掌握数量积的定义与运算律是解题基础.本题关键是用数量积的定义把模的运算转化为数量积的运算.14、【解析】
写出所在直线方程,求出圆心到直线的距离,结合题意可得关于的等式,求解得答案.【详解】解:直线的方程为,即.圆的圆心到直线的距离,由的面积是的面积的2倍的点,有且仅有一对,可得点到的距离是点到直线的距离的2倍,可得过圆的圆心,如图:由,解得.故答案为:.【点睛】本题考查直线和圆的位置关系以及点到直线的距离公式应用,考查数形结合的解题思想方法,属于中档题.15、5【解析】
根据题意,画出图像,数形结合,将目标转化为求动直线纵截距的最值,即可求解【详解】画出不等式组,表示的平面区域如图阴影区域所示,令,则.分析知,当,时,取得最小值,且.【点睛】本题考查线性规划问题,属于基础题16、【解析】
先由三视图在长方体中将其还原成直观图,再利用球的直径是长方体体对角线即可解决.【详解】由三视图知该几何体是一个三棱锥,如图所示长方体对角线长为,所以三棱锥外接球半径为,故所求外接球的表面积.故答案为:.【点睛】本题考查几何体三视图以及几何体外接球的表面积,考查学生空间想象能力以及基本计算能力,是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解析】
(1)取的中点,连.可证得,,于是可得平面,进而可得结论成立.(2)运用几何法或向量法求解可得所求角的正弦值.【详解】(1)证明:取的中点,连.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中点,连结,∵,∴,又,∴.又由题意得为等边三角形,∴,∵,∴平面.作,则有平面,∴就是直线与平面所成的角.设,则,在等边中,.又在中,,故.在中,由余弦定理得,∴,∴直线与平面所成角的正弦值为.解法2:由题意可得,建立如图所示的空间直角坐标系.不妨设,则在直角三角形中,可得,作于,则有平面几何知识可得,∴.又可得,.∴,.设平面的一个法向量为,由,得,令,则得.又,设直线与平面所成的角为,则.所以直线与平面所成角的正弦值为.【点睛】利用向量法求解直线和平面所成角时,关键点是恰当建立空间直角坐标系,确定斜线的方向向量和平面的法向量.解题时通过平面的法向量和直线的方向向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线与平面所成的角.求解时注意向量的夹角与线面角间的关系.18、(1)(2)【解析】
(1)利用零点分段法将表示为分段函数的形式,由此求得不等式的解集.(2)对分成三种情况,求得的最小值,由此求得的取值范围.【详解】(1)当时,,由此可知,的解集为(2)当时,的最小值为和中的最小值,其中,.所以恒成立.当时,,且,不恒成立,不符合题意.当时,,若,则,故不恒成立,不符合题意;若,则,故不恒成立,不符合题意.综上,.【点睛】本小题主要考查绝对值不等式的解法,考查根据绝对值不等式恒成立求参数的取值范围,考查分类讨论的数学思想方法,属于中档题.19、(1)或;(2)或.【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解集,最后求并集(2)根据绝对值三角不等式得最小值,再解含绝对值不等式可得的取值范围.试题解析:(1)等价于或或,解得:或.故不等式的解集为或.(2)因为:所以,由题意得:,解得或.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.20、(1)平行,证明见解析;(2).【解析】
(1)由题意及图形的翻折规律可知应是的一条中位线,利用线面平行的判定定理即可求证;(2)利用条件及线面垂直的判定定理可知,,则平面,在利用锥体的体积公式即可.【详解】(1)证明:因翻折后、、重合,∴应是的一条中位线,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理及锥体的体积公式,属于基础题.21、(1)的极坐标方程为;曲线的直角坐标方程.(2)【解析】
(1)消去参数,可得曲线的直角坐标方程,再利用极坐标与直角坐标的互化,即可求解.(2)解法1:设直线的倾斜角为,把直线的参数方程代入曲线的普通坐标方程,求得,再把直线的参数方程代入曲线的普通坐标方程,得,得出,利用基本不等式,即可求解;解法2:设直线的极坐标方程为,分别代入曲线,的极坐标方程,得,,得出,即可基本不等式,即可求解.【详解】(1)由题曲线的参数方程为(为参数),消去参数,可得曲线的直角坐标方程为,即,则曲线的极坐标方程为,即,又因为曲线的极坐标方程为,即,根据,代入即可求解曲线的直角坐标方程.(2)解法1:设直线的倾斜角为,则直线的参数方程为(为参数,),把直线的参数方程代入曲线的普通坐标方程得:,解得,,,把直线的参数方程代入曲线的普通坐标方程得:,解得,,,,,即,,,,当且仅当,即时取等号,故的最小值为.解法2:设直线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025下半年四川自贡市属事业单位考试聘用人员高频重点提升(共500题)附带答案详解
- 2025下半年北京市延庆县事业单位招聘39人历年高频重点提升(共500题)附带答案详解
- 2025上海地铁第一运营限公司多职能队员(巡视)(储备)招聘50人高频重点提升(共500题)附带答案详解
- 2025上半年贵州六盘水市事业单位及国企业招聘应征入伍大学毕业生【92】人高频重点提升(共500题)附带答案详解
- 2025上半年四川省江油市事业单位招聘95人历年高频重点提升(共500题)附带答案详解
- 农村建设诚信承诺书模板
- 银行网点智能系统布线合同
- 商场屋面瓦安装合同
- 2024年租房合同终止协议3篇
- 2024年物业中介服务定金协议
- 政府采购评审专家考试试题库(完整版)
- 生物信息学在微生物研究领域中的应用
- 分布式光伏发电项目并网验收意见单
- 看听学一册单词大全
- 网站隐私政策模板
- YY∕T 1831-2021 梅毒螺旋体抗体检测试剂盒(免疫层析法)
- 沪教版生物科学八年级上册重点知识点总结
- 消弧产品规格实用标准化规定
- 装饰装修工程施工合理化建议和降低成本措施提要:完整
- 己内酰胺的生产工艺.
- 第十四章35kV变电站保护整定值计算实例
评论
0/150
提交评论