版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.5空间角与距离、空间向量及其应用考点1用向量法判定空间中的位置关系1.(多选)(2021新高考Ⅰ,12,5分)在正三棱柱ABC-A1B1C1中,AB=AA1=1,点P满足BP=λBC+μBB1,其中λ∈[0,1],μ∈[0A.当λ=1时,△AB1P的周长为定值B.当μ=1时,三棱锥P-A1BC的体积为定值C.当λ=12时,有且仅有一个点P,使得A1P⊥D.当μ=12时,有且仅有一个点P,使得A1B⊥平面AB1答案BD选项A,当λ=1时,点P在线段CC1上,设CP=x(0≤x≤1),若x=0,则△AB1P即为△AB1C,此时△AB1P的周长为22+1;若x=1,则△AB1P即为△AB1C1,此时△AB1P的周长为22+1.若0<x<1,PC1=1-x,在Rt△PCA中,PA=1+x在Rt△B1C1P中,PB1=1+(1−而AB1=2,所以△AB1P的周长为2+x2−2x+2+选项B,当μ=1时,点P在线段B1C1上,因为B1C1∥BC,B1C1⊄平面A1BC,BC⊂平面A1BC,所以B1C1∥平面A1BC,所以直线B1C1上的任何一点到平面A1BC的距离均相等,所以三棱锥P-A1BC的体积为定值,故选项B正确;取BC,B1C1的中点分别为O,O1,连接OO1,AO,易知OO1⊥平面ABC,AO⊥BC,以OB,OA,OO1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,则B12,0,0,A0,−32,0,A10,−32,1,选项C,当λ=12时,点P在线段OO1上,设P(0,0,z)(0≤z≤1),则A1P=即z(z-1)=0,解得z=0或z=1,即当λ=12时,存在两个点P,使得A1P⊥BP,故选项C错误选项D,当μ=12时,点P在线段MN上(M,N分别是线段BB1,CC1的中点),设Px,0,12若A1B⊥平面AB1P,则A1B⊥AP,则A1B即12,32,−1·x,32,12=12x+34−所以当μ=12时,有且仅有一个点P,使得A1B⊥平面AB1P,故选项D正确.故选BD命题立意:本题以正三棱柱为载体,考查正三棱柱的性质,平面向量基本定理,空间几何体的体积,以及线面垂直的判定等,考查学生空间想象能力和逻辑推理能力,通过研究点P的位置,考查数形结合思想,体现数学运算与直观想象的核心素养,落实对试题的创新性和综合性的考查.考点2空间角与距离1.(2023全国乙理,9,5分,中)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形.若二面角C-AB-D为150°,则直线CD与平面ABC所成角的正切值为()A.1答案C取AB的中点E,连接CE,DE,则CE⊥AB,DE⊥AB,所以∠DEC是二面角C-AB-D的平面角,所以∠DEC=150°,因为DE∩CE=E,所以AB⊥平面DCE,因为AB⊂平面ABC,所以平面DCE⊥平面ABC,易知∠DCE为直线CD与平面ABC所成的角,设AB=a,在等腰直角△ABC中,CE=12a在等边△ABD中,DE=32a在△DCE中,由余弦定理,得DC2=12a2=74a2,∴DC=72则cos∠DCE=72∵0°<∠DCE<30°,∴sin∠DCE=1−5∴tan∠DCE=sin∠DCEcos∠DCE2.(2020新高考Ⅰ,4,5分)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°答案B由题意作出如图所示的截面图,设所求角为α,由图易知α=40°.故选B.3.(2022全国甲,理7,文9,5分)在长方体ABCD-A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30°,则()A.AB=2ADB.AB与平面AB1C1D所成的角为30°C.AC=CB1D.B1D与平面BB1C1C所成的角为45°答案D如图,连接BD.由题可知,BB1⊥平面ABCD,AD⊥平面AA1B1B,易知B1D与平面ABCD和平面AA1B1B所成的角分别为∠B1DB,∠AB1D,∴∠B1DB=∠AB1D=30°.设AD=1,则AB1=3,B1D=2,∴BB1=1,BD=3,∴AB=2,∴AB=2AD,故A错误.过B作BH⊥AB1,交AB1于H,易知∠HAB为AB与平面AB1C1D所成的角.∵BH=AB·BB∴sin∠HAB=BHAB=33,易知AC=3,CB1=2,∴AC≠CB1,故C错误.易知∠DB1C为B1D与平面BB1C1C所成的角,∴sin∠DB1C=DCB1D=22,∴∠DB1C=454.(多选)(2022新高考Ⅰ,9,5分)已知正方体ABCD-A1B1C1D1,则()A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°答案ABD连接B1C,交BC1于O,∵A1D∥B1C,∴∠B1OC1(或其补角)为直线BC1与DA1所成的角,又B1C⊥BC1,∴∠B1OC1=90°,即直线BC1与DA1所成角为90°.故选项A正确.由A1B1⊥平面BB1C1C,BC1⊂平面BB1C1C知A1B1⊥BC1,又BC1⊥B1C,A1B1∩B1C=B1,∴BC1⊥平面A1B1C,又CA1⊂平面A1B1C,∴BC1⊥CA1,∴直线BC1与CA1所成角为90°.故选项B正确.连接A1C1,交B1D1于点O1,连接O1B,易证C1O1⊥平面BB1D1D,∴BC1在平面BB1D1D内的射影为O1B,∴BC1与平面BB1D1D所成角为∠C1BO1.在Rt△BO1C1中,sin∠C1BO1=C1O1BC1=12,则∠C1∵CC1⊥平面ABCD,∴∠C1BC是BC1与平面ABCD所成的角,而∠C1BC=45°,故选项D正确.故选ABD.5.(2014课标Ⅱ,11,5分)直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.110B.C.3010D.答案C解法一:以C1为坐标原点,建立如图所示的空间直角坐标系,设BC=CA=CC1=2,则A(2,0,2),N(1,0,0),M(1,1,0),B(0,2,2),∴AN=(-1,0,-2),BM=(1,-1,-2),∴cos<AN,BM>=AN·BM|AN||BM|=−解法二:取BC的中点Q,连接QN,AQ,易知BM∥QN,则∠ANQ即为所求,设BC=CA=CC1=2,则AQ=5,AN=5,QN=6,∴cos∠ANQ=AN2+NQ2−故选C.6.(2013北京,8,5分)如图,在正方体ABCD-A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个答案B过P作平面A1B1C1D1、ABCD的垂线分别交D1B1、DB于E、F点,易知P也是EF的三等分点,设正方体的棱长为a,则PA1=PC1=a;PD1=233a;PB=33a;PB1=63a,PA=PC=63a;PD=a.故有思路分析设正方体的棱长为a,利用正方体中的直角三角形分别计算P到各顶点的距离即可.解后反思本题考查了线面的垂直关系、空间想象力及运算能力.构造直角三角形是解题关键.7.(2012陕西,5,5分)如图,在空间直角坐标系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为()A.55B.C.255答案A不妨设CB=1,则B(0,0,1),A(2,0,0),C1(0,2,0),B1(0,2,1).∴BC1=(0,2,-1),cos<BC1,AB1>=BC1·评析本题考查利用空间坐标运算求异面直线所成的角,考查了运算求解能力.8.(2023北京,16,14分,中)如图,在三棱锥P-ABC中,PA⊥平面ABC,PA=AB=BC=1,PC=3.(1)求证:BC⊥平面PAB;(2)求二面角A-PC-B的大小.解析(1)证明:因为PA⊥平面ABC,BC,AB⊂平面ABC,所以PA⊥BC,PA⊥AB.所以PB=PA又因为BC=1,PC=3,所以PB2+BC2=PC2,所以PB⊥BC,又因为PA⊥BC,且PA∩PB=P,PA,PB⊂平面PAB,所以BC⊥平面PAB.(2)以B为原点,BC所在直线为x轴,BA所在直线为y轴,建立如图所示的空间直角坐标系,则A(0,1,0),B(0,0,0),C(1,0,0),P(0,1,1),所以AP=(0,0,1),AC=(1,-1,0),PC=(1,-1,-1),BC=(1,0,0),设平面PAC的法向量为m=(x1,y1,z1),则m·AP=z1=0,m·AC=x1−y1=0,令设平面PBC的法向量为n=(x2,y2,z2),则n·PC=x2−y2−z2=0,n·BC=x所以cos<m,n>=m·n|m|·|n|又因为二面角A-PC-B为锐二面角,所以二面角A-PC-B的大小为π39.(2023新课标Ⅰ,18,12分,中)如图,在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4,点A2,B2,C2,D2分别在棱AA1,BB1,CC1,DD1上,AA2=1,BB2=DD2=2,CC2=3.(1)证明:B2C2∥A2D2;(2)点P在棱BB1上,当二面角P-A2C2-D2为150°时,求B2P.解析解法一(向量法):(1)证明:以C为原点,CD,CB,CC1的方向分别为x轴,y轴由题意知,A2(2,2,1),B2(0,2,2),C2(0,0,3),D2(2,0,2),则B2C2=(0,-2,1),A2D2=(∴B2C2=A2D2又知B2C2与A2D2无公共点,∴B2C2∥A2D2.(2)∵点P在棱BB1上,∴设P(0,2,a)(0≤a≤4),结合(1)可知A2C2=(-2,-2,2),A2D2=(0,-2,1),PA2=(2,0,1-a),PC2设平面A2C2D2的法向量为n1=(x1,y1,z1),则A2C令z1=2,则n1=(1,1,2).设平面PA2C2的法向量为n2=(x2,y2,z2),则PA2令z2=2,则n2=(a-1,3-a,2),又∵二面角P-A2C2-D2为150°,∴|cos150°|=|cos<n1,n2>|=|n1·n2即32=3a2−4a+7,化简得a2-4a+3=0,当a=1时,B2P=1;当a=3时,B2P=1.综上,B2P=1.解法二(几何法):(1)证明:如图,分别取BB2,CC1的中点B3,C3,连接A2B3,B3C3,D2C3,∴BB3=B2B3=1,CC3=2,∴C2C3=1,在正四棱柱ABCD-A1B1C1D1中,AA2∥BB3,AA2=BB3=1,∴四边形ABB3A2为平行四边形,∴A2B3=AB=2,A2B3∥AB,同理D2C3=CD,D2C3∥CD,又∵AB∥CD,AB=CD=2,∴A2B3∥D2C3,A2B3=D2C3,∴四边形A2B3C3D2为平行四边形,∴A2D2∥B3C3,A2D2=B3C3,∵B2B3∥C2C3,B2B3=C2C3=1,∴四边形B2B3C3C2为平行四边形,∴B2C2∥B3C3,B2C2=B3C3,∴B2C2∥A2D2.(2)当P在B1B2上时,连接A2B2.由(1)可知四边形A2B2C2D2为平行四边形,连接B2D2,设A2C2与B2D2相交于点E,∵二面角P-A2C2-D2为150°,∴直线B2E与平面PA2C2所成角为30°,易知B2E=2,所以B2到平面PA2C2的距离d1=B2E·sin30°=22连接A1B2,A1D2,A1C2,A1E,由A1B2=A1D2=22,得A1E⊥B2D2,所以A1E=6,由A1C2=A1A2=3,得A1E⊥A2C2,又B2D2∩A2C2=E,所以A1E⊥平面A2B2C2D2,因为二面角P-A2C2-D2为150°,所以A1E与平面PA2C2所成角为60°,所以点A1到平面PA2C2的距离d2=A1E·sin60°=32所以VA1−P设A1B2与A2P交于点Q,则A1QQB2=3,又知B2P∥∴B2PA1A2=B2QA1Q=13,又知A1A2=3,由对称性可知,当P在BB2上时,同样可得B2P=1.综上,B2P=1.10.(2023新课标Ⅱ,20,12分,中)如图,三棱锥A-BCD中,DA=DB=DC,BD⊥CD,∠ADB=∠ADC=60°,E为BC的中点.(1)证明:BC⊥DA;(2)点F满足EF=DA,求二面角D-AB-F的正弦值.解析(1)证明:连接AE,DE,∵DB=DC,E为BC的中点,∴DE⊥BC.又∵DA=DB=DC,∠ADB=∠ADC=60°,∴△ACD与△ABD均为等边三角形,∴AC=AB,∴AE⊥BC.又∵AE∩DE=E,AE⊂平面ADE,DE⊂平面ADE,∴BC⊥平面ADE,又∵DA⊂平面ADE,∴BC⊥DA.(2)设DA=DB=DC=2,则BC=22,DE=AE=2,∴AE2+DE2=4=DA2,∴AE⊥DE.又∵AE⊥BC,DE∩BC=E,DE⊂平面BCD,BC⊂平面BCD,∴AE⊥平面BCD.以E为原点,ED,EB,EA的方向分别为x轴,y轴,z则D(2,0,0),A(0,0,2),B(0,2,0),E(0,0,0),∴DA=(-2,0,2),AB=(0,2,-∵EF=DA,∴F(-2,0,2),∴AF=(-2,0,0).设平面DAB的法向量为n1=(x1,y1,z1),则DA·n令z1=1,则n1=(1,1,1).设平面ABF的法向量为n2=(x2,y2,z2),则AB·n令z2=1,则n2=(0,1,1).设二面角D-AB-F的平面角为θ,则|cosθ|=|n1·n2又∵θ∈[0,π],∴sinθ=1−cos2θ=1−∴二面角D-AB-F的正弦值为3311.(2023全国甲理,18,12分,中)如图,在三棱柱ABC-A1B1C1中,A1C⊥平面ABC,∠ACB=90°,AA1=2,A1到平面BCC1B1的距离为1.(1)证明:A1C=AC;(2)已知AA1与BB1的距离为2,求AB1与平面BCC1B1所成角的正弦值.解析(1)证明:∵A1C⊥平面ABC,BC⊂平面ABC,∴A1C⊥BC,又∵BC⊥AC,AC∩A1C=C,∴BC⊥平面ACC1A1,又∵BC⊂平面BCC1B1,∴平面ACC1A1⊥平面BCC1B1.过A1作A1H⊥CC1,则A1H⊥平面BCC1B1,(面面垂直的性质)即A1H的长为点A1到平面BCC1B1的距离,∴A1H=1.设AC=x,在Rt△A1CA中,A1C=4−x在Rt△CA1C1中,A1C1·A1C=CC1·A1H,即x·4−x2=2×1,解得x=2,故A1C=AC=∴A1C=AC.(2)连接B1C.过C作CQ⊥AA1,垂足为Q,连接BQ.由(1)知BC⊥平面ACC1A1,又AA1⊂平面ACC1A1,∴BC⊥AA1.又CQ∩BC=C,∴AA1⊥平面BCQ,∵BQ⊂平面BCQ,∴AA1⊥BQ,又∵AA1∥BB1,∴BB1⊥BQ,∴BQ的长为直线AA1与BB1之间的距离,即BQ=2.在Rt△BCQ中,BQ=2,CQ=1,∴BC=3.由(1)知CA、CB、CA1两两垂直,∴以直线CA,CB,CA1分别为x轴,y轴,z轴建立空间直角坐标系,如图所示,则C(0,0,0),A(2,0,0),A1(0,0,2),B(0,3,0),∴CB=(0,3,0),AA1=(-2,0,2),又知BB1=AA1=(-2,0,2),∴B1(-2,3,2).∴C设平面BCC1B1的法向量为n=(x,y,z),则n·CB=0,令x=1,则z=1,则n=(1,0,1),设直线AB1与平面BCC1B1所成角为θ,则sinθ=|cos<AB1,n>|=|AB1·n||即AB1与平面BCC1B1所成角的正弦值为131312.(2022全国甲(理),18)在四棱锥中,底面.(1)证明:;(2)求PD与平面所成的角的正弦值.【解析】(1)证明:在四边形中,作于,于,因为,所以四边形为等腰梯形,所以,故,,所以,所以,因为平面,平面,所以,又,所以平面,又因平面,所以;(2)如图,以点原点建立空间直角坐标系,,则,则,设平面的法向量,则有,可取,则,所以与平面所成角的正弦值为.13.(2022全国乙文,18,12分)如图,四面体中,,E为AC的中点.(1)证明:平面平面ACD;(2)设,点F在BD上,当的面积最小时,求三棱锥的体积.【解析】(1)由于,是的中点,所以.由于,所以,所以,故,由于,平面,所以平面,由于平面,所以平面平面.(2)依题意,,三角形是等边三角形,所以,由于,所以三角形是等腰直角三角形,所以.,所以,由于,平面,所以平面.由于,所以,由于,所以,所以,所以,由于,所以当最短时,三角形的面积最小值.过作,垂足为,在中,,解得,所以,所以过作,垂足为,则,所以平面,且,所以,所以.14.(2022全国乙理,18)如图,四面体中,,E为的中点.(1)证明:平面平面;(2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值.【解析】(1)因为,E为的中点,所以;在和中,因为,所以,所以,又因为E为的中点,所以;又因为平面,,所以平面,因为平面,所以平面平面.(2)连接,由(1)知,平面,因为平面,所以,所以,当时,最小,即的面积最小.因为,所以,又因为,所以是等边三角形,因为E为的中点,所以,,因为,所以,在中,,所以.以为坐标原点建立如图所示的空间直角坐标系,则,所以,设平面的一个法向量为,则,取,则,又因为,所以,所以,设与平面所成的角的正弦值为,所以,所以与平面所成的角的正弦值为.15.(2022新高考Ⅰ,19)如图,直三棱柱的体积为4,的面积为.(1)求A到平面的距离;(2)设D为的中点,,平面平面,求二面角的正弦值.【解析】(1)在直三棱柱中,设点A到平面的距离为h,则,解得,所以点A到平面的距离为;(2)取的中点E,连接AE,如图,因为,所以,又平面平面,平面平面,且平面,所以平面,在直三棱柱中,平面,由平面,平面可得,,又平面且相交,所以平面,所以两两垂直,以B为原点,建立空间直角坐标系,如图,由(1)得,所以,,所以,则,所以的中点,则,,设平面的一个法向量,则,可取,设平面的一个法向量,则,可取,则,所以二面角的正弦值为.16.(2022新高考Ⅱ,20)如图,是三棱锥的高,,,E是的中点.(1)求证:平面;(2)若,,,求二面角的正弦值.【解析】(1)证明:连接并延长交于点,连接、,因为是三棱锥的高,所以平面,平面,所以、,又,所以,即,所以,又,即,所以,,所以所以,即,所以为的中点,又为的中点,所以,又平面,平面,所以平面(2)过点作,如图建立平面直角坐标系,因为,,所以,又,所以,则,,所以,所以,,,,所以,则,,,设平面法向量为,则,令,则,,所以;设平面的法向量为,则,令,则,,所以;所以设二面角为,由图可知二面角为钝二面角,所以,所以故二面角的正弦值为;17.(2022北京,17,14分)如图,在三棱柱中,侧面为正方形,平面平面,,M,N分别为,AC的中点.(1)求证:平面;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.【解析】(1)取的中点为,连接,由三棱柱可得四边形为平行四边形,而,则,而平面,平面,故平面,而,则,同理可得平面,而平面,故平面平面,而平面,故平面,(2)因为侧面为正方形,故,而平面,平面平面,平面平面,故平面,因为,故平面,因为平面,故,若选①,则,而,,故平面,而平面,故,所以,而,,故平面,故可建立如所示的空间直角坐标系,则,故,设平面的法向量为,则,从而,取,则,设直线与平面所成的角为,则.若选②,因为,故平面,而平面,故,而,故,而,,故,所以,故,而,,故平面,故可建立如所示的空间直角坐标系,则,故,设平面的法向量为,则,从而,取,则,设直线与平面所成的角为,则.18.(2022浙江,19)如图,已知和都是直角梯形,,,,,,,二面角的平面角为.设M,N分别为的中点.(1)证明:;(2)求直线与平面所成角的正弦值.【解析】(1)过点、分别做直线、的垂线、并分别交于点交于点、.∵四边形和都是直角梯形,,,由平面几何知识易知,,则四边形和四边形是矩形,∴在Rt和Rt,,∵,且,∴平面是二面角的平面角,则,∴是正三角形,由平面,得平面平面,∵是的中点,,又平面,平面,可得,而,∴平面,而平面.(2)因为平面,过点做平行线,所以以点为原点,,、所在直线分别为轴、轴、轴建立空间直角坐标系,设,则,设平面的法向量为由,得,取,设直线与平面所成角为,∴.19.(2019天津理,17,13分)如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE=BC=2.(1)求证:BF∥平面ADE;(2)求直线CE与平面BDE所成角的正弦值;(3)若二面角E-BD-F的余弦值为13,求线段CF的长解析本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识,考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.重点考查的核心素养是逻辑推理、直观想象与数学运算.依题意,可以建立以A为原点,分别以AB,AD,AE的方向为x轴,y轴,z轴正方向的空间直角坐标系(如图),可得A(0,0,0),B(1,0,0),C(1,2,0),D(0,1,0),E(0,0,2).设CF=h(h>0),则F(1,2,h).(1)证明:依题意,AB=(1,0,0)是平面ADE的法向量,又BF=(0,2,h),可得BF·AB=0,又因为直线BF⊄平面ADE,所以BF∥平面ADE.(2)依题意,BD=(-1,1,0),BE=(-1,0,2),CE=(-1,-2,2).设n=(x,y,z)为平面BDE的法向量,则n·BD=0,n可得n=(2,2,1),因此有cos<CE,n>=CE·n|所以,直线CE与平面BDE所成角的正弦值为49(3)设m=(x,y,z)为平面BDF的法向量,则m·BD不妨令y=1,可得m=1,1,−由题意,有|cos<m,n>|=|m·n||m||n|=4−2ℎ32+4h2=思路分析从已知条件线面垂直、线线垂直、线线平行入手,建立空间直角坐标系,将立体几何中的位置关系转化为向量坐标关系,从而进行坐标运算,再将向量运算结果转化为立体几何中的位置关系或长度.方法总结利用空间向量解决立体几何问题的一般步骤:①观察图形,建立恰当的空间直角坐标系;②写出相应点的坐标,求出相应直线的方向向量;③设出相应平面的法向量,利用两直线垂直,其相应方向向量数量积为零列出方程组求出法向量;④将空间位置关系转化为向量关系;⑤根据定理结论求出相应的角和距离.20.(2019课标Ⅱ理,17,12分)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B-EC-C1的正弦值.解析本题考查线面垂直的判定和性质,空间向量的应用,考查空间想象能力,运算求解能力,考查了直观想象的核心素养.(1)由已知得,B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,所以BE⊥平面EB1C1.(2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=45°,故AE=AB,AA1=2AB.以D为坐标原点,DA的方向为x轴正方向,|DA|为单位长,建立如图所示的空间直角坐标系D-xyz,则C(0,1,0),B(1,1,0),C1(0,1,2),E(1,0,1),CB=(1,0,0),CE=(1,-1,1),CC设平面EBC的法向量为n=(x,y,z),则CB·n所以可取n=(0,-1,-1).设平面ECC1的法向量为m=(x,y,z),则CC1所以可取m=(1,1,0).于是cos<n,m>=n·m|所以,二面角B-EC-C1的正弦值为32一题多解(2)连接BC1.设AE=m,不妨令AB=1,则BE=m2+1,C1E=m2+2,BC∵BE⊥EC1,∴4m2+1=2m2+3,解得m=1,则AA1=2.连接AC,BD,相交于点O,连接A1C1.由题意可知AC⊥BD,BD⊥CC1,AC∩CC1=C,∴BD⊥平面AA1C1C,∴BD⊥CE,即BO⊥CE.在长方形AA1C1C中,AC=2,AA1=2.连接AC1,有CC1AC=22=ACAE,又∠EAC=∠C1CA=90°,则Rt△C1∴∠ECA+∠C1AC=90°,∴CE⊥AC1.取CC1的中点F,连接OF,BF,则OF∥AC1,∴OF⊥CE.∵BO∩OF=O,∴CE⊥平面FOB.设CE∩OF=G,连接BG,∴CE⊥BG,CE⊥FG,则∠BGF为二面角B-CE-C1的平面角,且sin∠BGF=sin∠BGO.设AC1∩CE=H,易得△AEH∽△C1CH.又∵AE=12CC1,∴AH=13AC1.易知OG∥AH,又∵O为AC的中点,∴OG=12AH.∵BO=22,OG=12AH=16AC1=66,BO⊥OG,∴tan∠BGO=2266=3,∴∠21.(2017北京理,16,14分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=6,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.解析本题考查面面垂直的性质定理,线面平行的性质定理,二面角,直线与平面所成的角等知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力.(1)设AC,BD交点为E,连接ME.因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)取AD的中点O,连接OP,OE.因为PA=PD,所以OP⊥AD.又因为平面PAD⊥平面ABCD,且OP⊂平面PAD,所以OP⊥平面ABCD.因为OE⊂平面ABCD,所以OP⊥OE.因为ABCD是正方形,所以OE⊥AD.如图建立空间直角坐标系O-xyz,则P(0,0,2),D(2,0,0),B(-2,4,0),BD=(4,-4,0),PD=(2,0,-2).设平面BDP的法向量为n=(x,y,z),则n·BD令x=1,则y=1,z=2.于是n=(1,1,2).平面PAD的一个法向量为p=(0,1,0).所以cos<n,p>=n·p|由题意知二面角B-PD-A为锐角,所以它的大小为π3(3)由题意知M−1,2,22,C(2,4,0),MC设直线MC与平面BDP所成角为α,则sinα=|cos<n,MC>|=|n·MC所以直线MC与平面BDP所成角的正弦值为26方法总结1.在求二面角时,通常用空间向量法,即建立空间直角坐标系,求出两个面的法向量n1,n2,设二面角的大小为θ,则有|cosθ|=|cos<n1,n2>|=|n1·n22.用向量法求直线与平面所成的角的方法:设直线的方向向量为e,平面的法向量为n,则直线与平面所成的角θ满足sinθ=e·n|e22.(2017课标Ⅰ理,18,12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.解析本题考查了立体几何中面面垂直的证明和二面角问题.(1)由已知∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD.由于AB∥CD,故AB⊥PD,又AP∩PD=P,从而AB⊥平面PAD.又AB⊂平面PAB,所以平面PAB⊥平面PAD.(2)在平面PAD内作PF⊥AD,垂足为F.由(1)可知,AB⊥平面PAD,故AB⊥PF,又AD∩AB=A,可得PF⊥平面ABCD.以F为坐标原点,FA的方向为x轴正方向,|AB|为单位长,建立如图所示的空间直角坐标系F-xyz.由(1)及已知可得A22,0,0,P0,0,22,B所以PC=−22,1,−22,CB=(2,0,0),设n=(x1,y1,z1)是平面PCB的法向量,则n·PC可取n=(0,-1,-2).设m=(x2,y2,z2)是平面PAB的法向量,则m·PA可取m=(1,0,1).则cos<n,m>=n·m|易知二面角A-PB-C为钝二面角,所以二面角A-PB-C的余弦值为-33方法总结面面垂直的证明及向量法求解二面角.(1)面面垂直的证明证明两个平面互相垂直,可以在一个平面内找一条直线l,证明直线l垂直于另一平面.(2)利用空间向量求解几何体中的二面角的余弦值.建立空间直角坐标系,找到点的坐标,求出两个半平面的法向量n1,n2,设二面角的大小为θ,则|cosθ|=|n1·23.(2017课标Ⅲ理,19,12分)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.解析本题考查面面垂直的证明,二面角的求法.(1)由题设可得,△ABD≌△CBD,从而AD=DC.又△ACD是直角三角形,所以∠ADC=90°.取AC的中点O,连接DO,BO,则DO⊥AC,DO=AO.又由于△ABC是正三角形,故BO⊥AC.所以∠DOB为二面角D-AC-B的平面角.在Rt△AOB中,BO2+AO2=AB2.又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,故∠DOB=90°.所以平面ACD⊥平面ABC.(2)由题设及(1)知,OA,OB,OD两两垂直.以O为坐标原点,OA的方向为x轴正方向,|OA|为单位长,建立如图所示的空间直角坐标系O-xyz.则A(1,0,0),B(0,3,0),C(-1,0,0),D(0,0,1).由题设知,四面体ABCE的体积为四面体ABCD的体积的12,从而E到平面ABC的距离为D到平面ABC的距离的12,即E为DB的中点,得E0,32,12.故AD设n=(x,y,z)是平面DAE的法向量,则n·AD=0,n·AE=0,设m是平面AEC的法向量,则m同理可取m=(0,-1,3).则cos<n,m>=n·m|易知二面角D-AE-C为锐二面角,所以二面角D-AE-C的余弦值为77方法总结证明面面垂直最常用的方法是证明其中一个平面经过另一个平面的一条垂线,即在一个平面内,找一条直线,使它垂直于另一个平面.用空间向量法求二面角的余弦值时,要判断二面角是钝角还是锐角.24.(2016课标Ⅱ理,19,12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=54,EF交BD于点H.将△DEF沿EF折到△D'EF的位置,OD'=10(1)证明:D'H⊥平面ABCD;(2)求二面角B-D'A-C的正弦值.解析(1)证明:由已知得AC⊥BD,AD=CD.又由AE=CF得AEAD=CFCD,故AC因此EF⊥HD,从而EF⊥D'H.(2分)由AB=5,AC=6得DO=BO=AB由EF∥AC得OHDO=AEAD=所以OH=1,D'H=DH=3.于是D'H2+OH2=32+12=10=D'O2,故D'H⊥OH.(4分)又D'H⊥EF,而OH∩EF=H,所以D'H⊥平面ABCD.(5分)(2)如图,以H为坐标原点,HF的方向为x轴正方向,建立空间直角坐标系H-xyz.则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D'(0,0,3),AB=(3,-4,0),AC=(6,0,0),AD'=(3,1,3).(6分设m=(x1,y1,z1)是平面ABD'的法向量,则m·AB所以可取m=(4,3,-5).(8分)设n=(x2,y2,z2)是平面ACD'的法向量,则n·AC所以可取n=(0,-3,1).(10分)于是cos<m,n>=m·n|m||sin<m,n>=295因此二面角B-D'A-C的正弦值是29525.(12思路分析(1)利用已知条件及翻折的性质得出D'H⊥EF,利用勾股定理的逆定理得出D'H⊥OH,从而得出结论;(2)在第(1)问的基础上建立恰当的空间直角坐标系,从而求出两个半平面的法向量,利用向量的夹角公式求二面角的余弦值,从而求出正弦值.评析本题主要考查翻折问题,线面垂直的证明以及用空间向量法求解二面角的基本知识和基本方法,考查学生的运算求解能力以及空间想象能力,求解各点的坐标是利用向量法解决空间问题的关键.25.(2016山东,17,12分)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O'的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点.求证:GH∥平面ABC;(2)已知EF=FB=12AC=23,AB=BC.求二面角F-BC-A的余弦值解析(1)证明:设FC中点为I,连接GI,HI.在△CEF中,因为点G是CE的中点,所以GI∥EF.又EF∥OB,所以GI∥OB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.(2)解法一:连接OO',则OO'⊥平面ABC.又AB=BC,且AC是圆O的直径,所以BO⊥AC.以O为坐标原点,建立如图所示的空间直角坐标系O-xyz.由题意得B(0,23,0),C(-23,0,0),所以BC=(-23,-23,0),过点F作FM垂直OB于点M.所以FM=FB2−BM故BF=(0,-3,3).设m=(x,y,z)是平面BCF的法向量.由m可得−可得平面BCF的一个法向量m=−1,1,因为平面ABC的一个法向量n=(0,0,1),所以cos<m,n>=m·n|所以二面角F-BC-A的余弦值为77解法二:连接OO'.过点F作FM垂直OB于点M.则有FM∥OO'.又OO'⊥平面ABC,所以FM⊥平面ABC.可得FM=FB过点M作MN垂直BC于点N,连接FN.可得FN⊥BC,从而∠FNM为二面角F-BC-A的平面角.又AB=BC,AC是圆O的直径,所以MN=BMsin45°=62从而FN=422可得cos∠FNM=77所以二面角F-BC-A的余弦值为77评析本题考查了线面平行、垂直的位置关系;考查了二面角的求解方法;考查了空间想象能力和逻辑推理能力.正确找到二面角的平面角或正确计算平面的法向量是求解的关键.26.(2016浙江,17,12分)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求二面角B-AD-F的平面角的余弦值.解析(1)延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE⊥平面ABC,且AC⊥BC,所以,AC⊥平面BCK,因此,BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.所以BF⊥平面ACFD.(2)解法一:过点F作FQ⊥AK于Q,连接BQ.因为BF⊥平面ACK,所以BF⊥AK,则AK⊥平面BQF,所以BQ⊥AK.所以,∠BQF是二面角B-AD-F的平面角.在Rt△ACK中,AC=3,CK=2,得FQ=313在Rt△BQF中,FQ=31313,BF=3,得cos∠BQF=所以,二面角B-AD-F的平面角的余弦值为34解法二:由(1)知△BCK为等边三角形.取BC的中点O,连接KO,则KO⊥BC,又平面BCFE⊥平面ABC,所以,KO⊥平面ABC.以点O为原点,分别以射线OB,OK的方向为x,z的正方向,建立如图所示的空间直角坐标系O-xyz.由题意得B(1,0,0),C(-1,0,0),K(0,0,3),A(-1,-3,0),E12,0,3因此,AC=(0,3,0),AK=(1,3,3),AB=(2,3,0).设平面ACK的法向量为m=(x1,y1,z1),平面ABK的法向量为n=(x2,y2,z2).由AC·m=0,AK·m=0由AB·n=0,AK·n=0于是,cos<m,n>=m·n|又易知二面角B-AD-F为锐二面角,所以,二面角B-AD-F的平面角的余弦值为34方法总结若二面角的平面角为θ,两半平面的法向量分别为n1和n2,则|cosθ|=|cos<n1,n2>|,要求cosθ的值,还需结合图形判断二面角的平面角是锐角还是钝角,进而决定cosθ=|cos<n1,n2>|,还是cosθ=-|cos<n1,n2>|.评析本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力和运算求解能力.27.(2015课标Ⅰ理,18,12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC;(2)求直线AE与直线CF所成角的余弦值.解析(1)证明:连接BD.设BD∩AC=G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC=3.由BE⊥平面ABCD,AB=BC,可知AE=EC.又AE⊥EC,所以EG=3,且EG⊥AC.在Rt△EBG中,可得BE=2,故DF=22在Rt△FDG中,可得FG=62在直角梯形BDFE中,由BD=2,BE=2,DF=22,可得EF=3从而EG2+FG2=EF2,所以EG⊥FG.又AC∩FG=G,可得EG⊥平面AFC.因为EG⊂平面AEC,所以平面AEC⊥平面AFC.(6分)(2)如图,以G为坐标原点,分别以GB,GC的方向为x轴,y轴正方向,|GB|为单位长,建立空间直角坐标系G-xyz.由(1)可得A(0,-3,0),E(1,0,2),F−1,0,22,C(0,3,0),所以AE=(1,3,2),CF=−故cos<AE,CF>=AE·CF|所以直线AE与直线CF所成角的余弦值为33.(12分思路分析(1)利用勾股定理的逆定理和平面与平面垂直的判定定理求证.(2)建立适当的空间直角坐标系,利用向量的夹角的余弦公式求解.解后反思建立适当的空间直角坐标系,利用空间向量的有关公式是求解的关键.证明“EG⊥平面AFC”是解题的难点.28.(2015课标Ⅱ理,19,12分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.解析(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH=EH2−以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),FE=(10,0,0),HE=(0,-6,8).设n=(x,y,z)是平面EHGF的法向量,则n·FE所以可取n=(0,4,3).又AF=(-10,4,8),故|cos<n,AF>|=|n·AF所以AF与平面EHGF所成角的正弦值为4529.(2015山东理,17,12分)如图,在三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.解析(1)连接DG,CD,设CD∩GF=O,连接OH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则O为CD的中点,又H为BC的中点,所以OH∥BD,又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.(2)设AB=2,则CF=1.在三棱台DEF-ABC中,G为AC的中点,由DF=12AC=GC,可得四边形DGCF为平行四边形,因此DG∥又FC⊥平面ABC,所以DG⊥平面ABC.在△ABC中,由AB⊥BC,∠BAC=45°,G是AC中点,所以AB=BC,GB⊥GC,因此GB,GC,GD两两垂直.以G为坐标原点,建立如图所示的空间直角坐标系G-xyz.所以G(0,0,0),B(2,0,0),C(0,2,0),D(0,0,1).可得H22,2故GH=22,22,0设n=(x,y,z)是平面FGH的法向量,则由n可得x可得平面FGH的一个法向量n=(1,-1,2).因为GB是平面ACFD的一个法向量,GB=(2,0,0),所以cos<GB,n>=GB·n|GB|所以平面FGH与平面ACFD所成角(锐角)的大小为60°.30.(2015陕西,18,12分)如图1,在直角梯形ABCD中,AD∥BC,∠BAD=π2,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.解析(1)证明:在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=π2所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC,又CD∥BE,所以CD⊥平面A1OC.(2)因为平面A1BE⊥平面BCDE,又由(1)知,BE⊥OA1,BE⊥OC,所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=π2如图,以O为原点,建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,所以B22,0,0,E−22,0,0,A得BC=−22,22,0,A1C=设平面A1BC的法向量n1=(x1,y1,z1),平面A1CD的法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,则n1·BC=0,n1n2·CD=0,n2从而cosθ=|cos<n1,n2>|=23×2即平面A1BC与平面A1CD夹角的余弦值为63评析本题主要考查线面垂直的判定、面面垂直的性质以及平面与平面的夹角的求解.考查学生的空间想象能力以及运算求解能力.正确利用面面垂直的性质定理建立空间直角坐标系是求解的关键.31.(2015湖北理,19,12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是不是鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF与面ABCD所成二面角的大小为π3,求DCBC解析解法一:(1)因为PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD,而DE⊂平面PCD,所以BC⊥DE.又因为PD=CD,点E是PC的中点,所以DE⊥PC.而PC∩BC=C,所以DE⊥平面PBC.而PB⊂平面PBC,所以PB⊥DE.又PB⊥EF,DE∩EF=E,所以PB⊥平面DEF.由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.(2)如图,在面PBC内,延长BC与FE交于点G,则DG是平面DEF与平面ABCD的交线.由(1)知,PB⊥平面DEF,所以PB⊥DG.又因为PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD.故∠BDF是面DEF与面ABCD所成二面角的平面角,设PD=DC=1,BC=λ,有BD=1+λ在Rt△PDB中,由DF⊥PB,得∠DPF=∠FDB=π3则tanπ3=tan∠DPF=BDPD=1+λ2=3,所以DCBC=1λ=故当面DEF与面ABCD所成二面角的大小为π3时,DCBC=解法二:(1)如图,以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系.设PD=DC=1,BC=λ,则D(0,0,0),P(0,0,1),B(λ,1,0),C(0,1,0),PB=(λ,1,-1),点E是PC的中点,所以E0,1DE=0,1于是PB·DE=0,即PB⊥DE.又已知EF⊥PB,而DE∩EF=E,所以PB⊥平面DEF.因PC=(0,1,-1),DE·PC=0,则DE⊥PC,所以DE⊥平面PBC.由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.(2)由PD⊥平面ABCD,所以DP=(0,0,1)是平面ABCD的一个法向量;由(1)知,PB⊥平面DEF,所以BP=(-λ,-1,1)是平面DEF的一个法向量.若面DEF与面ABCD所成二面角的大小为π3则cosπ3=BP·DP|BP解得λ=2,所以DCBC=1λ=故当面DEF与面ABCD所成二面角的大小为π3时,DCBC=32.(2014北京理,17,14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P-ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.解析(1)证明:在正方形AMDE中,因为B是AM的中点,所以AB∥DE.又因为AB⊄平面PDE,所以AB∥平面PDE.因为AB⊂平面ABF,且平面ABF∩平面PDE=FG,所以AB∥FG.(2)因为PA⊥底面ABCDE,所以PA⊥AB,PA⊥AE.如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),F(0,1,1),BC=(1,1,0).设平面ABF的法向量为n=(x,y,z),则n·AB令z=1,则y=-1.所以n=(0,-1,1).设直线BC与平面ABF所成角为α,则sinα=|cos<n,BC>|=n·BC|因此直线BC与平面ABF所成角的大小为π6设点H的坐标为(u,v,w).因为点H在棱PC上,所以可设PH=λPC(0<λ<1),即(u,v,w-2)=λ(2,1,-2).所以u=2λ,v=λ,w=2-2λ.因为n是平面ABF的法向量,所以n·AH=0,即(0,-1,1)·(2λ,λ,2-2λ)=0.解得λ=23,所以点H的坐标为4所以PH=43评析本题考查了空间直线与平面平行,线面角,空间向量等知识;考查空间推理论证能力,计算能力;建立恰当坐标系,利用空间向量准确求解是解题的关键.33.(2014课标Ⅱ理,18,12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.解析(1)证明:连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.又EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)因为PA⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,AB的方向为x轴的正方向,|AP|为单位长,建立空间直角坐标系A-xyz,则D(0,3,0),E0,32,12设B(m,0,0)(m>0),则C(m,3,0),AC=(m,3,0).设n1=(x,y,z)为平面ACE的法向量,则n1·可取n1=3m又n2=(1,0,0)为平面DAE的法向量,由题设得|cos<n1,n2>|=12,即33+4m2=12因为E为PD的中点,所以三棱锥E-ACD的高为12三棱锥E-ACD的体积V=13×12×3×32×1评析本题考查线面平行的判定,利用空间向量解二面角问题,考查了学生的空间想象能力.34.(2014江西,19,12分)如图,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.解析(1)证明:因四边形ABCD为矩形,故AB⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以AB⊥平面PAD,故AB⊥PD.(2)过P作AD的垂线,垂足为O,过O作BC的垂线,垂足为G,连接PG.故PO⊥平面ABCD,BC⊥平面POG,BC⊥PG.在Rt△BPC中,PG=233,GC=26设AB=m,则OP=PG2−OG2=43−m2,故四棱锥P-ABCD的体积V=因为m8−6m2=故当m=63,即AB=63时,四棱锥P-ABCD此时,建立如图所示的坐标系,各点的坐标为O(0,0,0),B63,−63,0,C故PC=63,263,−63设平面BPC的法向量为n1=(x,y,1),则由n1⊥PC,n1⊥BC得63x+26同理可求出平面DPC的法向量为n2=0,1从而平面BPC与平面DPC夹角θ的余弦值为cosθ=|n1·n2评析本题考查面面垂直的性质定理、线线垂直的判定、空间几何体的体积以及二面角的求解等基础知识,考查空间想象能力、推理论证能力和运算求解能力,正确利用面面垂直的性质定理求出棱锥的高是解决本题的关键.计算失误是失分的主要原因.35.(2014湖南理,19,12分)如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1-OB1-D的余弦值.解析(1)证明:因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD,因为CC1∥DD1,所以CC1⊥BD,而AC∩BD=O,因此CC1⊥底面ABCD.由题设知,O1O∥C1C,故O1O⊥底面ABCD,(2)解法一:如图,过O1作O1H⊥OB1于H,连接HC1.由(1)知,O1O⊥底面ABCD,所以O1O⊥底面A1B1C1D1,于是O1O⊥A1C1.又因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形,因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1,进而OB1⊥C1H,故∠C1HO1是二面角C1-OB1-D的平面角,不妨设AB=2,因为∠CBA=60°,所以OB=3,OC=1,OB1=7.在Rt△OO1B1中,易知O1H=OO1·O1B1OB1=237,而O1C1故cos∠C1HO1=O1HC1H即二面角C1-OB1-D的余弦值为257解法二:因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形ABCD是菱形,因此AC⊥BD,又由(1)知O1O⊥底面ABCD,从而OB,OC,OO1两两垂直.如图,以O为坐标原点,OB,OC,OO1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系O-xyz,不妨设AB=2,因为∠CBA=60°,所以OB=3,OC=1,于是相关各点的坐标为O(0,0,0),B1(3,0,2),C1(0,1,2).易知,n1=(0,1,0)是平面BDD1B1的一个法向量.设n2=(x,y,z)是平面OB1C1的法向量,则n2·取z=-3,则x=2,y=23,所以n2=(2,23,-3),设二面角C1-OB1-D的大小为θ,易知θ是锐角,于是cosθ=|cos<n1,n2>|=n1·n2|故二面角C1-OB1-D的余弦值为25736.(2014辽宁理,19,12分)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角E-BF-C的正弦值.解析(1)证法一:过E作EO⊥BC,垂足为O,连接OF.由△ABC≌△DBC可证出△EOC≌△FOC.图1所以∠EOC=∠FOC=π2即FO⊥BC.又EO⊥BC,因此BC⊥面EFO.又EF⊂面EFO,所以EF⊥BC.证法二:以B为坐标原点,在平面DBC内过B且垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B且垂直BC的直线为z轴,建立如图2所示空间直角坐标系,易得B(0,0,0),A(0,-1,3),D(3,-1,0),C(0,2,0),因而E0,12,32,F32,12,0,所以,EF=32,0,−32,BC图2(2)解法一:在图1中,过O作OG⊥BF,垂足为G,连EG.由平面ABC⊥平面BDC,从而EO⊥面BDC,又OG⊥BF,易知EG⊥BF.因此∠EGO为二面角E-BF-C的平面角.在△EOC中,EO=12EC=12BC·cos30°=由△BGO∽△BFC知,OG=BOBC·FC=3因此tan∠EGO=EOOG=2,从而sin∠EGO=255,即二面角E-BF-C解法二:在图2中,平面BFC的一个法向量为n1=(0,0,1).设平面BEF的法向量为n2=(x,y,z),又BF=32,12,0由n2·BF=0,n2设二面角E-BF-C的大小为θ,且由题意知θ为锐角,则cosθ=|cos<n1,n2>|=n1·n2|因此sinθ=25=255,评析本题考查空间位置关系的证明及空间角的求法,考查线线垂直的本质是对垂直关系转化的考查.在利用向量法求二面角的正弦值时,注意到平面BFC的一个法向量为(0,0,1),可以使问题简捷,本题的难点和易错点都是空间直角坐标系的建立,由于A,D两点都不在坐标轴上,因此正确求出A,D两点的坐标是解决本题的关键.37.(2014天津理,17,12分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(1)证明BE⊥DC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.解析依题意,以点A为原点建立空间直角坐标系(如图),可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2).由E为棱PC的中点,得E(1,1,1).(1)证明:向量BE=(0,1,1),DC=(2,0,0),故BE·DC=0.所以BE⊥DC.(2)向量BD=(-1,2,0),PB=(1,0,-2).设n=(x1,y1,z1)为平面PBD的法向量,则n·BD=0,n·PB=0,即−x+2ycos<n,BE>=n·BE|n|所以直线BE与平面PBD所成角的正弦值为33(3)向量BC=(1,2,0),CP=(-2,-2,2),AC=(2,2,0),AB=(1,0,0).由点F在棱PC上,设CF=λCP,0≤λ≤1.故BF=BC+CF=BC+λCP=(1-2λ,2-2λ,2λ).由BF⊥AC,得BF·AC=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=34.故BF=−12,12,32.设n1=(x1,y1,z1不妨令z1=1,可得n1=(0,-3,1)为平面FAB的一个法向量.取平面ABP的法向量n2=(0,1,0),则cos<n1,n2>=n1·n2|易知,二面角F-AB-P是锐角,所以其余弦值为31038.(2014安徽,20,13分)如图,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD.四边形ABCD为梯形,AD∥BC,且AD=2BC.过A1,C,D三点的平面记为α,BB1与α的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.解析(1)证明:因为BQ∥AA1,BC∥AD,BC∩BQ=B,AD∩AA1=A,所以平面QBC∥平面A1AD.从而平面A1CD与这两个平面的交线相互平行,即QC∥A1D.故△QBC与△A1AD的对应边相互平行,于是△QBC∽△A1AD.所以BQBB1=BQAA1=BCAD=12(2)如图1,连接QA,QD.图1设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上下两部分的体积分别为V上和V下,BC=a,则AD=2a.VQ−A1AD=13×12·VQ-ABCD=13·a+2a2·d·所以V下=VQ−A1AD又VA1B所以V上=VA1B1C1D1−故V上V下(3)解法一:如图1,在△ADC中,作AE⊥DC,垂足为E,连接A1E,AC.又DE⊥AA1,且AA1∩AE=A,所以DE⊥平面AEA1,于是DE⊥A1E.所以∠AEA1为平面α与底面ABCD所成二面角的平面角.因为BC∥AD,AD=2BC,所以S△ADC=2S△BCA.又因为梯形ABCD的面积为6,DC=2,所以S△ADC=4,AE=4.于是tan∠AEA1=AA1AE=1,∠AEA1故平面α与底面ABCD所成二面角的大小为π4解法二:如图2,以D为原点,DA,DD1的方向分别为x轴和z图2设∠CDA=θ.因为S四边形ABCD=a+2a2·2sinθ=6,所以从而C(2cosθ,2sinθ,0),A14sin所以DC=(2cosθ,2sinθ,0),DA1=设平面A1DC的一个法向量为n=(x,y,1),由DA1·n=4所以n=(-sinθ,cosθ,1).又因为平面ABCD的一个法向量为m=(0,0,1),所以cos<n,m>=n·m|易知所求二面角为锐二面角,故平面α与底面ABCD所成二面角的大小为π4评析本题考查了空间直线、平面间的平行、垂直,柱、锥体积,二面角等知识;考查综合推理,转化与化归的意识,运用向量推理计算的能力;准确把握空间结构进行推理证明是解题的关键.39.(2014山东理,17,12分)如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(1)求证:C1M∥平面A1ADD1;(2)若CD1垂直于平面ABCD且CD1=3,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.解析(1)证明:因为四边形ABCD是等腰梯形,且AB=2CD,所以AB∥DC,又由M是AB的中点,因此CD∥MA且CD=MA.连接AD1,在四棱柱ABCD-A1B1C1D1中,因为CD∥C1D1,CD=C1D1,可得C1D1∥MA,C1D1=MA,所以四边形AMC1D1为平行四边形.因此C1M∥D1A,又C1M⊄平面A1ADD1,D1A⊂平面A1ADD1,所以C1M∥平面A1ADD1.(2)解法一:连接AC,MC,由(1)知CD∥AM且CD=AM,所以四边形AMCD为平行四边形.可得BC=AD=MC,由题意∠ABC=∠DAB=60°,所以△MBC为正三角形,因此AB=2BC=2,CA=3,因此CA⊥CB.以C为坐标原点,建立如图所示的空间直角坐标系C-xyz.所以A(3,0,0),B(0,1,0),D1(0,0,3),因此M32所以MD1=−32,−1设平面C1D1M的法向量n=(x,y,z),由n·D可得平面C1D1M的一个法向量n=(1,3,1).又CD1=(0,0,3)为平面ABCD因此cos<CD1,n>=CD所以平面C1D1M和平面ABCD所成的角(锐角)的余弦值为55解法二:由(1)知平面D1C1M∩平面ABCD=AB,过C向AB引垂线交AB于N,连接D1N.由CD1⊥平面ABCD,可得D1N⊥AB,因此∠D1NC为二面角C1-AB-C的平面角.在Rt△BNC中,BC=1,∠NBC=60°,可得CN=32所以ND1=CD12在Rt△D1CN中,cos∠D1NC=CND1N=3所以平面C1D1M和平面ABCD所成的角(锐角)的余弦值为5540.(2013课标Ⅱ理,18,12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=22(1)证明:BC1∥平面A1CD;(2)求二面角D-A1C-E的正弦值.解析(1)连接AC1交A1C于点F,则F为AC1中点.又D是AB中点,连接DF,则BC1∥DF.因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.(2)由AC=CB=22AB得,AC⊥以C为坐标原点,CA的方向为x轴正方向,建立如图所示的空间直角坐标系C-xyz.设CA=2,则D(1,1,0),E(0,2,1),A1(2,0,2),CD=(1,1,0),CE=(0,2,1),CA1设n=(x1,y1,z1)是平面A1CD的法向量,则n·CD可取n=(1,-1,-1).同理,设m是平面A1CE的法向量,则m可取m=(2,1,-2).从而cos<n,m>=n·m|n||m|=3即二面角D-A1C-E的正弦值为63思路分析(1)连接AC1交A1C于点F,得出F为AC1的中点,进而由三角形中位线定理得BC1∥DF,结合线面平行的判定定理即可获证线面平行;(2)以C为坐标原点,CA,CB,CC1的方向分别为x轴,y轴,z轴正方向建立空间直角坐标系,分别求出平面A1CD与平面A1CE的法向量,利用向量法求出二面角D-A1C-E41.(2013广东理,18,14分)如图①,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=2,O为BC的中点.将△ADE沿DE折起,得到如图②所示的四棱锥A'-BCDE,其中A'O=3.(1)证明:A'O⊥平面BCDE;(2)求二面角A'-CD-B的平面角的余弦值.图①图②解析(1)在题图①中,易得OC=3,AC=32,AD=22.连接OD,OE,在△OCD中,由余弦定理可得OD=OC2+由翻折不变性可知A'D=22,所以A'O2+OD2=A'D2,所以A'O⊥OD,同理可证A'O⊥OE,又OD∩OE=O,所以A'O⊥平面BCDE.(2)解法一:过O作OH⊥CD交CD的延长线于H,连接A'H,因为A'O⊥平面BCDE,所以A'H⊥CD,所以∠A'HO为二面角A'-CD-B的平面角.结合题图①可知,H为AC中点,故OH=322,从而A'H=OH所以cos∠A'HO=OHA'H=155,所以二面角解法二:以O点为原点,建立空间直角坐标系O-xyz如图所示,则A'(0,0,3),C(0,-3,0),D(1,-2,0),所以CA'=(0,3,3),DA'=(-1,2,设n=(x,y,z)为平面A'CD的法向量,则n即3y+令x=1,得n=(1,-1,3).由(1)知,OA'=(0,0,3)为平面CDB的一个法向量所以cos<n,OA'>=n·OA'|n||OA'|评析本题考查了直线与直线垂直的证明及二面角的求法.属中等难度题,运算要准确.42.(2013浙江理,20,15分)如图,在四面体ABCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C-BM-D的大小为60°,求∠BDC的大小.解析解法一:(1)证明:取BD的中点O,在线段CD上取点F,使得DF=3FC,连接OP,OF,FQ.因为AQ=3QC,所以QF∥AD,且QF=14因为O,P分别为BD,BM的中点,所以OP是△BDM的中位线,所以OP∥DM,且OP=12又点M为AD的中点,所以OP∥AD,且OP=14从而OP∥FQ,且OP=FQ,所以四边形OPQF为平行四边形,故PQ∥OF.又PQ⊄平面BCD,OF⊂平面BCD,所以PQ∥平面BCD.(2)作CG⊥BD于点G,作GH⊥BM于点H,连接CH.因为AD⊥平面BCD,CG⊂平面BCD,所以AD⊥CG,又CG⊥BD,AD∩BD=D,故CG⊥平面ABD,又BM⊂平面ABD,所以CG⊥BM.又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省乐山市峨眉山市2024年九年级数学调研考试试卷含答案
- 九江职业技术学院《府际关系》2023-2024学年第一学期期末试卷
- 江苏航运职业技术学院《传统木刻套色版画》2023-2024学年第一学期期末试卷
- 湖南科技职业学院《广告美学》2023-2024学年第一学期期末试卷
- 【物理】第十二章简单机械 单元复习题 2024-2025学年人教版物理八年级下学期
- 【物理】《阿基米德原理》(教学设计)-2024-2025学年人教版(2024)初中物理八年级下册
- 高考物理模拟测试题(带答案)
- 浙江中医药大学《光电信息科学与工程专业导论》2023-2024学年第一学期期末试卷
- 浙江横店影视职业学院《数字逻辑》2023-2024学年第一学期期末试卷
- 中国科学技术大学《药理与毒理学》2023-2024学年第一学期期末试卷
- 冬春季呼吸道传染病防控
- 中介费合同范本(2025年)
- 【物 理】2024-2025学年八年级上册物理寒假作业人教版
- 2024年计算机二级WPS考试题库380题(含答案)
- GB/T 42616-2023电梯物联网监测终端技术规范
- 河南省医院信息大全
- 酒店赔偿价目表
- 广西贵港市2023年中考物理试题(原卷版)
- 外观质量评定报告
- 集团总裁岗位说明书
- 中医药膳学课件
评论
0/150
提交评论