四川司法警官职业学院《设计图文表达》2023-2024学年第一学期期末试卷_第1页
四川司法警官职业学院《设计图文表达》2023-2024学年第一学期期末试卷_第2页
四川司法警官职业学院《设计图文表达》2023-2024学年第一学期期末试卷_第3页
四川司法警官职业学院《设计图文表达》2023-2024学年第一学期期末试卷_第4页
四川司法警官职业学院《设计图文表达》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页四川司法警官职业学院

《设计图文表达》2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共20个小题,每小题1分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的图像生成任务中,除了生成新的图像,还可以对已有图像进行风格转换。假设我们要将一张照片转换为油画风格,以下哪种方法能够实现逼真的风格转换效果?()A.基于图像滤波和变换的方法B.基于深度学习的风格迁移算法,如CycleGANC.基于图像融合和合成的方法D.基于颜色映射和纹理合成的方法2、计算机视觉在自动驾驶领域有重要应用。假设车辆需要根据摄像头采集的图像来识别道路上的交通标志,并且要在不同天气和光照条件下都能准确识别。以下哪种方法可能有助于提高交通标志识别的鲁棒性?()A.使用多个不同类型的摄像头获取图像B.仅依赖颜色特征进行识别C.采用简单的线性分类器进行标志分类D.减少训练数据中的交通标志种类3、当利用计算机视觉进行图像语义分割任务,例如将图像中的不同物体分割出来,以下哪种深度学习架构可能在分割精度和效率方面表现较好?()A.FCNB.U-NetC.SegNetD.以上都是4、计算机视觉中的光流估计是计算图像中像素的运动信息。以下关于光流估计的叙述,不正确的是()A.光流估计可以用于视频中的运动分析、目标跟踪和动作识别等任务B.基于深度学习的光流估计方法在精度和速度上都有了很大的提升C.光流估计只对匀速运动的物体有效,对于复杂的非匀速运动估计不准确D.光流估计的结果可以为后续的计算机视觉任务提供重要的运动线索5、在计算机视觉的图像配准任务中,需要将不同时间或视角拍摄的图像进行对齐。假设要将两张拍摄角度不同的卫星图像进行精确配准,图像中存在地形变化和云层遮挡。以下哪种图像配准方法在这种困难情况下能够取得较好的效果?()A.基于特征的配准B.基于灰度的配准C.基于变换模型的配准D.基于深度学习的配准6、图像分类是计算机视觉的常见应用之一。考虑一个需要对大量自然风景图片进行分类的任务,这些图片包含了不同的季节、地理位置和天气条件。为了提高分类准确率,以下哪种预处理操作可能最为有效?()A.对图像进行裁剪和缩放,使其具有统一的尺寸B.对图像进行直方图均衡化,增强对比度C.将图像转换为灰度图像,减少颜色信息的干扰D.对图像进行随机旋转和翻转,增加数据多样性7、计算机视觉在农业中的应用可以帮助监测农作物的生长状况。假设要通过图像分析判断农作物的病虫害程度,以下关于农业计算机视觉应用的描述,正确的是:()A.仅依靠农作物的颜色特征就能准确判断病虫害的程度B.不同农作物品种和生长阶段对病虫害判断的影响不大C.结合图像的纹理、形状和颜色等多特征,可以更准确地评估农作物的健康状况D.农业环境的复杂性对计算机视觉的应用没有挑战8、假设要开发一个能够在低光照条件下清晰拍摄并处理图像的计算机视觉系统,以下哪种图像增强方法可能有助于改善图像质量?()A.直方图均衡化B.伽马校正C.暗通道先验去雾D.以上都是9、计算机视觉中的光流计算用于估计图像中像素的运动。假设要在一个动态场景中准确计算光流,以下哪种情况可能导致较大的误差?()A.物体的快速运动B.光照的剧烈变化C.图像的低分辨率D.以上都有可能10、计算机视觉中的图像修复旨在恢复图像中缺失或损坏的部分。假设一张珍贵的老照片有部分区域损坏,需要进行修复以还原其完整的内容。以下哪种图像修复方法在处理这种情况时能够生成更自然和逼真的结果?()A.基于扩散的图像修复B.基于纹理合成的图像修复C.基于深度学习的图像修复D.基于样例的图像修复11、在计算机视觉的视频分析中,假设要对一段监控视频中的异常行为进行检测。以下关于特征提取的方法,哪一项是不太适合的?()A.提取每一帧图像的颜色、纹理等低级特征B.利用光流信息来捕捉物体的运动特征C.仅分析视频的音频信息,忽略图像内容D.结合时空特征,同时考虑空间和时间维度的信息12、在计算机视觉的立体视觉中,需要通过两个或多个相机获取的图像来计算深度信息。假设要为一个自动驾驶汽车构建立体视觉系统,以测量与前方障碍物的距离,同时要考虑实时性和准确性的要求。以下哪种立体匹配算法在这种应用场景中表现最优?()A.基于区域的匹配B.基于特征的匹配C.基于深度学习的匹配D.全局优化匹配13、在计算机视觉的图像压缩任务中,需要在减少数据量的同时尽量保持图像的质量。假设要对一组高清图像进行压缩,以节省存储空间和传输带宽,同时要求解压后的图像能够满足一定的视觉要求。以下哪种图像压缩算法在这种情况下效果较好?()A.JPEG压缩算法B.PNG压缩算法C.WebP压缩算法D.BPG压缩算法14、计算机视觉中的光流计算用于估计图像中像素的运动。假设要分析一段视频中物体的运动速度和方向。以下关于光流计算的描述,哪一项是不准确的?()A.可以通过比较连续帧之间的像素差异来计算光流B.光流计算能够为视频中的目标跟踪和行为分析提供重要信息C.无论视频的帧率和分辨率如何,光流计算都能准确地估计像素运动D.深度学习方法也被应用于光流计算,提高了计算的准确性和效率15、计算机视觉中的表情识别用于分析人脸的表情状态。假设要在一个在线教育平台中检测学生的学习状态。以下关于表情识别的描述,哪一项是不正确的?()A.可以通过提取面部肌肉的运动特征来判断表情B.深度学习中的卷积神经网络能够自动学习表情的特征表示C.表情识别能够准确区分细微的表情变化,如困惑和专注D.表情识别不受面部遮挡和光照变化的影响,始终能够准确判断16、计算机视觉中的视觉注意力机制用于聚焦图像中的重要区域。以下关于视觉注意力机制的说法,不正确的是()A.视觉注意力机制可以根据图像的特征和任务需求动态地选择关注的区域B.注意力机制能够提高模型的效率和性能,减少对无关信息的处理C.视觉注意力机制在图像分类、目标检测和图像生成等任务中得到了广泛应用D.视觉注意力机制的引入会增加模型的复杂度和计算量,降低模型的训练速度17、对于图像的语义理解任务,假设要理解一张图像所表达的场景和事件,例如判断一张图像是在举行婚礼还是在举办音乐会。图像中的信息可能比较隐晦和复杂。以下哪种方法可能有助于提高语义理解的准确性?()A.构建图像的语义图,分析物体之间的关系B.只关注图像中的主要物体,忽略背景信息C.对图像进行简单的分类,不进行深入的语义分析D.随机猜测图像的语义18、在计算机视觉的图像特征提取中,假设要提取对光照、旋转和缩放具有不变性的特征。以下关于特征提取方法的描述,正确的是:()A.SIFT特征具有良好的不变性,但计算复杂度高,实时性差B.HOG特征对光照变化适应性强,但对旋转和缩放较敏感C.LBP特征能够快速提取,但特征表达能力有限D.没有一种特征提取方法能够同时满足对光照、旋转和缩放的不变性要求19、在计算机视觉中,目标检测是一项重要的任务。假设要开发一个能够在城市交通场景中检测车辆和行人的系统。以下关于目标检测算法的选择,哪一项是需要重点考虑的因素?()A.算法的检测速度,以满足实时性要求B.算法在小目标检测上的性能,因为车辆和行人在图像中可能较小C.算法的模型复杂度,越复杂的模型效果越好D.算法是否开源,开源的算法更易于使用20、在计算机视觉的图像超分辨率任务中,假设要将一张低分辨率图像恢复为高分辨率图像。以下关于图像超分辨率方法的描述,正确的是:()A.基于插值的方法简单快速,但恢复出的图像细节不够清晰B.基于深度学习的方法能够生成逼真的高分辨率图像,但需要大量的训练数据和计算资源C.图像超分辨率技术可以无限制地提高图像的分辨率,不受硬件限制D.所有的图像超分辨率方法都能够完全恢复出原始高分辨率图像的所有信息二、简答题(本大题共5个小题,共25分)1、(本题5分)说明计算机视觉在智能穿戴设备中的应用。2、(本题5分)说明计算机视觉在海洋牧场监测中的应用。3、(本题5分)解释计算机视觉中的模型蒸馏技术。4、(本题5分)描述计算机视觉在桥梁检测中的应用。5、(本题5分)说明计算机视觉在海洋声学研究中的作用。三、分析题(本大题共5个小题,共25分)1、(本题5分)解析某科技公司的产品发布会邀请函设计,探讨其如何通过视觉元素传达发布会的信息、科技感和品牌的创新精神,吸引嘉宾的参与。2、(本题5分)分析某健身俱乐部的会员证设计,思考其如何通过色彩、图案、个人信息展示等体现会员的专属感和俱乐部的品牌形象。3、(本题5分)一家幼儿园的室内外环境设计色彩鲜艳,充满童趣,设施安全。请探讨此设计在为儿童创造快乐学习和成长环境、吸引家长选择、体现教育理念方面的策略,以及如何根据儿童的年龄特点进行分区设计。4、(本题5分)研究一款具有创意的眼镜盒设计,剖析其如何通过独

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论