版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ExploringGraphMamba:AComprehensiveSurveyonState-SpaceModelsforGraphLearning
arXiv:2412.18322v1[cs.LG]24Dec2024
SAFABENATITALLAH,PrinceSultanUniversity,SaudiArabiaandUniversityofManouba,Tunisia
CHAIMABENRABAH,WeillCornellMedicine,QatarandUniversityofManouba,TunisiaMAHADRISS,PrinceSultanUniversity,SaudiArabiaandUniversityofManouba,Tunisia
WADIIBOULILA,PrinceSultanUniversity,SaudiArabiaandUniversityofManouba,Tunisia
ANISKOUBAA,PrinceSultanUniversity,SaudiArabia
GraphMamba,apowerfulgraphembeddingtechnique,hasemergedasacornerstoneinvariousdomains,includingbioinformatics,socialnetworks,andrecommendationsystems.ThissurveyrepresentsthefirstcomprehensivestudydevotedtoGraphMamba,toaddressthecriticalgapsinunderstandingitsapplications,challenges,andfuturepotential.WestartbyofferingadetailedexplanationoftheoriginalGraphMambaarchitecture,highlightingitskeycomponentsandunderlyingmechanisms.Subsequently,weexplorethemostrecentmodificationsandenhancementsproposedtoimproveitsperformanceandapplicability.TodemonstratetheversatilityofGraphMamba,weexamineitsapplicationsacrossdiversedomains.AcomparativeanalysisofGraphMambaanditsvariantsisconductedtoshedlightontheiruniquecharacteristicsandpotentialusecases.Furthermore,weidentifypotentialareaswhereGraphMambacanbeappliedinthefuture,highlightingitspotentialtorevolutionizedataanalysisinthesefields.Finally,weaddressthecurrentlimitationsandopenresearchquestionsassociatedwithGraphMamba.Byacknowledgingthesechallenges,weaimtostimulatefurtherresearchanddevelopmentinthispromisingarea.ThissurveyservesasavaluableresourceforbothnewcomersandexperiencedresearchersseekingtounderstandandleveragethepowerofGraphMamba.
AdditionalKeyWordsandPhrases:StateSpaceModels,MambaBlock,GraphMamba,GraphLearning,GraphConvolutionalNetwork,Applications
ACMReferenceFormat:
SafaBenAtitallah,ChaimaBenRabah,MahaDriss,WadiiBoulila,andAnisKoubaa.2024.ExploringGraphMamba:AComprehensiveSurveyonState-SpaceModelsforGraphLearning.1,1(December2024),
35
pages.
/10.1145/nnnnnnn.nnnnnnn
1Introduction
Graph-basedlearningmodels,particularlyGraphNeuralNetworks(GNNs),havegainedsignificanttractioninrecentyearsduetotheirabilitytoeffectivelycaptureandprocesscomplexrelationaldata.Thesemodelshaveprovenadvantageousinmanydifferentfieldswheregraphsarethetypicalwaytorepresentdata
[1]
.TheincreasingsignificanceofGNNscanbeattributedtovariousfactors.Graph-structureddatahasbeenraisedinmanyreal-worldsystems,suchassocialnetworks,molecularstructures,andcitationnetworks
[2,
3]
.GNNshaveasolidabilitytoleveragerelationalinformationandtheconnectionsbetweenentities.Inaddition,differentadvancedGNNarchitectureshavebeenproposedwithhighscalabilitytohandlelarge-scalegraphs,
Authors’ContactInformation:SafaBenAtitallah,satitallah@.sa,PrinceSultanUniversity,Riyadh,SaudiArabiaandUniversityofManouba,Manouba,Tunisia;ChaimaBenRabah,WeillCornellMedicine,Doha,QatarandUniversityofManouba,Manouba,Tunisia;MahaDriss,PrinceSultanUniversity,Riyadh,SaudiArabiaandUniversityofManouba,Manouba,Tunisia;WadiiBoulila,PrinceSultanUniversity,Riyadh,SaudiArabiaandUniversityofManouba,Manouba,Tunisia;AnisKoubaa,PrinceSultanUniversity,Riyadh,SaudiArabia.
Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage.Copyrightsforcomponentsofthisworkownedbyothersthantheauthor(s)mustbehonored.Abstractingwithcreditispermitted.Tocopyotherwise,orrepublish,topostonserversortoredistributetolists,requirespriorspecificpermissionand/orafee.Requestpermissionsfrompermissions@.
。2024Copyrightheldbytheowner/author(s).PublicationrightslicensedtoACM.ACMXXXX-XXXX/2024/12-ART
/10.1145/nnnnnnn.nnnnnnn
,Vol.1,No.1,Article.Publicationdate:December2024.
2BenAtitallahetal.
makingthemsuitableforbigdataapplications.Thistypeoflearningcanbeappliedtovarioustasks,includingnodeclassification,linkprediction,andgraphclassification.
However,theyfaceseveralsignificantchallengesthatlimittheireffectivenessinspecificscenarios.MostGNNsarerestrictedintheirabilitytoeffectivelycapturelong-rangedependencies.Theytypicallyrelyonmessagepassingbetweenneighboringnodes,whichcanleadtoinformationdilutionovermultiplehops.Thisconstraintisparticularlyproblematicingraphswithcomplexhierarchicalstructures.Inaddition,manyGNNarchitecturesrequiremultipleroundsofneighborhoodaggregation,whichiscomputationallyexpensive,especiallyforlarge-scalegraphs.Thecomputationalcostgrowssignificantlyasthenumberoflayersincreasestocapturemorecomplexpatterns.Furthermore,GNNsusuallyfacememoryconstraintsandincreasedtrainingtimewhenappliedtolargegraphs
[4]
.Theissueisheightenedfordynamicgraphs,wherethestructurechangesovertimeandrequiresfrequentupdatestonoderepresentations.Samplingtechniqueshavebeenproposedtoaddressthisbutcanleadtoinformationloss.GNNvariantshavequadraticcomplexityregardingthenumberofnodesortokens.SimilarissuesariseinGNNswhencomputingfullgraphattentionorwhendealingwithdensegraphs.Thisquadraticscalingsignificantlyimpactsperformanceandlimitstheapplicationofthesemodelstohugegraphsorlongsequences.
Indeed,addressingthelimitationsofcurrentgraph-basedlearningmodelsiscrucialfortheirbroaderapplicability.OnepromisingdirectioninthiseffortistheadaptationofState-SpaceModels(SSMs)tographlearning,whichhasledtothedevelopmentofGraphMamba.SSMsaremathematicalmodelsinitiallydesignedforsequencemodelingincontroltheoryandsignalprocessing.Theyrepresentasystem’sbehaviorusingasetofinput,output,andstatevariablesrelatedbyfirst-orderdifferentialequations.InthecontextofML,SSMscanefficientlymodellong-rangedependenciesinsequentialdata.Theyofferacontinuous-timeperspectiveonsequencemodeling,whichcanbenefitspecificdatatypes.
Recently,MambahasemergedasagroundbreakingapproachinArtificialIntelligence(AI),specificallydesignedasaspecializedformoftheSSMtoaddressthecomputationallimitationsoftraditionalDeepLearning(DL)models.Standardmodels,suchasConvolutionalNeuralNetworks(CNNs)andTransformers,faceasignificantchallengerelatedtocomputationalinefficiency,particularlyintasksinvolvinglong-sequencemodeling.Mamba’sprimarygoalistoenhancecomputationalefficiencybyreducingtimecomplexityfromquadratic,asseenintransformers,tolinear.InspiredbyadvancementsinstructuredSSMs,Mambaispresentedtoboostperformanceinareasrequiringlong-rangedependencymodelingandlarge-scaledataprocessing.
GraphMambaemergesasaspecializedvariantofSSMsdesignedspecificallyforgraphlearning.ItsprimarygoalistoaddressthelimitationsoftraditionalGNNsbyleveragingtheuniquestrengthsofstate-spacemodels.ThecoreconceptofGraphMambaisitsstate-spacemodelingapproach,whichemploysselectivescanning,apowerfulmechanismforefficientlyprocessinggraphinformationbydynamicallyfocusingonthemostrelevantpartsofthegraphstructure.ThisallowsGraphMambatomanagelarge-scaleandcomplexgraphswithsuperiorcomputationalperformance.
Recently,therehasbeenanincreasinginterestinGraphMamba,asshownbythegrowingnumberofarticles.ThissurveyaimstoinvestigatethepotentialofintegratinggraphstructureswithMambaframeworkstoenhancerepresentationlearningandscalability.Throughacomparativeanalysisofexistingliteratureandempiricalstudies,thissurveyevaluatestheperformanceofGraphMambaagainsttraditionalMachineLearning(ML)methods.
1.1RelatedSurveys
Thissectionprovidesathoroughsummaryofessentialsurveystudiesfromtworesearchfields;GNNarchitec-turesandMambaframework.
1.1.1SurveysonGraphNeuralNetworks:AdvancementsandApplications.GNNshavefoundapplicationsinavarietyofdomains,includingcomputervision,recommendationsystems,frauddetection,andhealthcare.SeveralcomprehensivesurveyshavebeenelaboratedonGNNs.In
[5],theauthorspresentedacomprehensive
reviewofGNNs,emphasizingtheirevolution,essentialconcepts,andnumerouspotentialapplicationsofthiscutting-edgetechnology.GNNstransformedMLbyeffectivelymodelingrelationshipsingraph-structureddata,overcomingtheconstraintsofconventionalneuralnetworks.ThestudydescribedmajorGNNarchitecturessuchasGraphConvolutionalNetworks(GCNs),GraphAttentionNetworks(GATs),andGraphSampleand
,Vol.1,No.1,Article.Publicationdate:December2024.
ExploringGraphMamba:AComprehensiveSurveyonState-SpaceModelsforGraphLearning3
Aggregate(GraphSAGE),aswellastheirmessage-passingmechanismsforrepeatedlyaggregatinginformationfromneighboringnodes.Amongtheapplicationsinvestigatedwerenodeclassification,linkprediction,andgraphclassificationacrosssocialnetworks,biology,andrecommendationsystems.Inaddition,thepaperexaminedcommonlyuseddatasetsandPythonlibraries,exploredscalabilityandinterpretabilityissues,andrecommendedfutureresearchareastoimproveGNNperformanceandexpanditsapplicabilitytodynamicandheterogeneousgraphs.Theauthorsin
[6]providedacomprehensivereviewofGNNsandtheirapplicationsin
dataminingandMLfields.Itdiscussedtheissuesposedbygraph-structureddatainnon-EuclideandomainsandhowDLmethodshadbeenmodifiedtoaccommodatesuchdata.Theauthorsin
[6]presentedanew
taxonomythatdividedGNNsintofourtypes:recurrentGNNs,convolutionalGNNs,graphautoencoders,andspatial-temporalGNNs,eachofwhichwascustomizedtoaspecificgraph-basedtask.ThesurveyalsoexaminedthepracticalusesofGNNsinsocialnetworks,recommendationsystems,andbiologicalmodeling.Furthermore,itreviewedopen-sourceimplementations,benchmarkdatasets,andevaluationcriteriautilizedinGNNresearch.Itconcludedbylistingunresolvedchallengesandproposingfutureresearchtopics,highlightingthepotentialforadvancedGNNmethodologiesandapplications.
1.1.2SurveysonMamba:Trends,Techniques,andApplications.Sinceitsintroductioninlate2023,MambahasreceivedalotofattentionintheDLcommunitybecauseitofferscompellingbenefitsthatencourageadoptionandexplorationacrossmultipledomains.NnumeroussurveyshavebeenelaboratedtoinvestigateMAmbapotentialanditsapplications.Forexample,ThePatroetal.in
[7]investigatedtheuseofSSMs
asefficientalternativestotransformersforsequencemodelingapplications.ItclassifiedSSMsintothreeparadigms:gating,structural,andrecurrent,anddiscussedkeymodelslikeS4,HiPPO,andMamba.ThissurveyemphasizedtheuseofSSMsinavarietyofdomains,includingnaturallanguageprocessing,vision,audio,andmedicaldiagnostics.ItcomparedSSMsandtransformersbasedoncomputationalefficiencyandbenchmarkperformance.ThepaperemphasizedtheneedforadditionalresearchtoimproveSSMs’abilitytohandleextendedsequenceswhilemaintaininghighperformanceacrossmultipleapplications.
Quetal.
[8]gaveathoroughexplanationofMamba
.TheypositionedMambaasaviablealternativetotransformertopologies,particularlyfortasksinvolvingextendedsequences.ThesurveypresentsthefundamentalsofMamba,highlightingitsincorporationoffeaturesfromRNNs,Transformers,andSSMs.ItexaminedimprovementsinMambadesign,includingthecreationofMamba-1andMamba-2,whichfeaturedbreakthroughssuchasselectivestatespacemodeling,HiPPO-basedmemoryinitialization,andhardware-awarecomputationoptimizationmethods.TheauthorsalsolookedintoMamba’sapplicationsinavarietyofdomains,includingnaturallanguageprocessing,computervision,time-seriesanalysis,andspeechprocessing,demonstratingitsversatilityintaskssuchaslargelanguagemodeling,videoanalysis,andmedicalimaging.ThestudyidentifiedmanyproblemsrelatedtoMambause,includinglimitationsincontext-awaremodelingandtrade-offsbetweenefficiencyandgeneralization.TheyalsosuggestedimprovementsforMamba’sgeneralizationcapabilities,computationalefficiency,anddiscusseditsapplicabilityinnewresearchareasinthefuture.
Intheirrecentstudy,Wangetal.in
[9]conductedacomprehensivesurveythatemphasizedthechanging
landscapeofDLtechnologies.ThissurveyfocusedprimarilyonthetheoreticalfoundationsandapplicationsofSSMsinfieldssuchasnaturallanguageprocessing,computervision,andmulti-modallearning,withthegoalofaddressingthecomputationalinefficienciesofconventionalmodels.Experimentalcomparisonsrevealedthat,whileSSMsshowedpromiseintermsofefficiency,theyfrequentlyfellshortoftheperformanceofcutting-edgetransformermodels.Despitethis,thefindingsinthisstudyrevealedthatSSMscouldreducememoryusageandprovideinsightsintofutureresearchtoimprovetheirperformance.ThisstudyprovidedvaluableinsightsintoDLarchitectures,showingthatSSMscouldplayacrucialroleintheirdevelopment.
Ontheotherhand,recentstudieshaveexploredMambaVisiontechniques,emphasizingitsrapidgrowthandrisingimportanceincomputervision.TheyhighlightMamba’sabilitytoaddressthelimitationsofCNNsandVisionTransformers,particularlyincapturinglong-rangedependencieswithlinearcomputationalcomplexity.Rahmanetal.
[10]investigatedtheMambamodel,thisrevolutionarycomputervisionapproach
thataddressedtheconstraintsofCNNsandVisionTransformers(ViTs).WithCNNs,localfeatureextractionismoreefficient,butwithViTs,long-rangedependenciesaremoredifficultduetotheirquadraticself-attentionmechanism.MambausedSelectiveStructuredStateSpaceModels(S4)tohandlelong-rangedependencieswith
,Vol.1,No.1,Article.Publicationdate:December2024.
4BenAtitallahetal.
linearcomputationalcost-efficiently.ThesurveyclassifiedMambamodelsintofourapplicationcategories:videoprocessing,medicalimaging,remotesensing,and3Dpointcloudanalysis.Avarietyofscanningapproacheswerealsoexamined,includingzigzag,spiral,andomnidirectionalmethods.ThepaperemphasizedMamba’scomputationalefficiencyandscalability,whichmakeitsuitableforhigh-resolutionandreal-timeoperations.TheauthorsalsoconductedacomparisoninvestigationofMambaagainstCNNsandViTs,provingitsadvantagesinavarietyofbenchmarks.Theyalsodiscussedpotentialfutureresearchdirections,suchasincreasingdynamicstaterepresentationsandmodelinterpretability.Overall,thearticlepositionedMambaasaparadigmforbalancingperformanceandcomputationefficiencyincomputervision.
Thestudypresentedin
[11]providedacomprehensivesurveyandtaxonomyofSSMsinvision-oriented
approaches,withafocusonMamba.AcomparisonwasmadebetweenMamba,CNNs,andTransformers.Duetoitsabilitytohandleirregularandsparsedata,Mambahasbeenusedforavarietyofvisionapplications,includingmedicalimageanalysis,remotesensing,and3Dvisualidentification.ThissurveyclassifiedMambamodelsbyapplicationareas,suchasgeneralvision,multi-modaltasks,andvertical-domaintasks,andpresentedacomprehensivetaxonomyofMambavariants,aswellasdetaileddescriptionsoftheirprinciplesandapplications.ThemainobjectiveofthissurveywastohelpacademicscomprehendMamba’sdevelopmentandpotentialtoimprovecomputervision,particularlyinapplicationsthatrequirecomputingefficiencyandlong-rangedependencymodeling.
1.1.3Discussion.Whilethesurveysdiscussedaboveprovideessentialinsightsintoavarietyofcutting-edgefields,theydohavesignificantlimitations.ManysurveysonGNNsconcentrateonthetheoreticalfoundationsandarchitectureofthesenetworks,payinglittleattentiontopracticalproblemsandmodelscalabilityindynamicscenarios.Inaddition,whilethesesurveyshighlightGNN’srelevanceinresearchfieldslikehealthcareandrecommendationsystems,theyoftenignorepracticalchallengessuchascomputationalcomplexity,scalabilityinlargenetworks,andlimitedgeneralizationacrossheterogeneousdatasets.Besides,whilemanysurveysdiscussMambaframeworks’potentialtoovercometransformerlimitations,theytendtofocusontheoreticaladvancementsandmodelefficiencyratherthanprovidinganin-depthanalysisofreal-worldlimitations,suchastrade-offsbetweencomputationalefficiencyandperformanceacrossvariousdomains.TheavailablestudiesonGNNsandMambamodelshighlighttheirdistinctimprovementsbutremainlimitedinscope.GNNsurveysinvestigategraph-basedlearningbutdonotexplorehowgraphstructuresmaybeincorporatedintoMambaframeworks.Mamba-relatedsurveys,ontheotherhand,concentrateonsequentialmodelingandcomputingefficiencywithoutinvestigatingthepossibilityofcombininggraph-basedmethods.Thisdiscrepancycreatesahugeresearchgap.IntegratinggraphstructuresintoMambapresentstransformativecapabilitiesthatneedacomprehensivereview.
1.2ContributionsoftheProposedSurvey
TherehasbeenarapidsurgeinresearchexploringGraphMamba’sarchitecture,improvements,andappli-cationsacrossvariousdomains.However,theinsightsremaindistributedacrossvariousstudies,andthereiscurrentlynothoroughreviewthatbringsthesefindingstogether.Asthefieldadvancesrapidly,awell-structuredoverviewofthelatestdevelopmentsisincreasinglyvaluable.Themaincontributionsofthissurveypaperareillustratedinthefollowingpoints:
•ThissurveyoffersacomprehensiveexplanationofthefundamentalprinciplesofGraphMambaandoffersastrongtheoreticalfoundationforbothresearchersandpractitioners.
•ItexaminesthemostrecentenhancementstotheoriginalGraphMambaarchitectureandevaluatestheperformanceimplicationsofvariousproposedmodifications.
•AcomparisonofvariousGraphMambavariantsispresentedtoemphasizetheiruniquecharacteristics.
•ThesurveyexaminesavarietyofdisciplinesinwhichGraphMambahasbeenimplemented,suchascomputervision,healthcare,andbiosignals.
•Additionally,itidentifiespotentialfieldsforfutureimplementationsofGraphMambaandaddressesthecurrentlimitationsandopenresearchquestionsinthiscontext.
,Vol.1,No.1,Article.Publicationdate:December2024.
ExploringGraphMamba:AComprehensiveSurveyonState-SpaceModelsforGraphLearning5
1.3PaperOrganization
ThissurveyprovidesacomprehensiveoverviewofGraphMambastatespacemodels,includingtheirarchitec-tures,applications,challenges,andpotentialfuturedirections.WeexploretheadvantagesanddisadvantagesofexistingGraphMambamodelsanddiscusstheirprospectsforfuturedevelopment.Thepaperisorganizedasfollows:Section
2
discussesthepreliminariesandkeytermsrelatedtoGraphNeuralNetworks,StateSpaceModels,andMamba.InSection
3,wedelveintovariousGraphMambaarchitectures
.Section
4
highlightsrecentapplicationsofGraphMamba.Sections
5
and
6
presentbenchmarksandacomparativeanalysisofresultsdemonstratingGraphMamba’sperformanceacrossdifferenttasks.Section
7
outlinesthelimitationsofapplyingGraphMamba.Section
8
exploresemergingareasandfutureresearchdirections.Finally,weconclude
theworkinSection
9.
2Preliminaries
ThissectionreviewsthefoundationofGNNsandSSMsandhowtheyareintegratedintheGraphMambaframework.
2.1GraphNeuralNetworks(GNNs)
GNNshavedevelopedasastrongclassofDLmodelsbuiltforgraph-structureddata.UnlikestandardMLmodels,whichoftenoperateonfixed-sizedinputssuchaspicturesorsequences,GNNsarespeciallydesignedtohandlenon-Euclideandata,representedasnodesandedges
[1].ThismakesGNNsidealfortasksthatneedcomplicated
relationaldata,suchassocialnetworks,knowledgegraphs,chemicalstructures,andrecommendationsystems.Graphsareinherentlyadaptableandcanrepresentabroadrangeofdataformats.StandardDLmodels,suchasCNNs,performwellwithstructureddatalikegridsorsequencesbutfailtogeneralizetographdata.GNNsaddressthisdrawbackbylearningrepresentationsofnodes,edges,andgraphsinawaythatcapturesboththelocalneighborhoodinformationandtheglobalstructureofthegraph.Indeed,GNNsarebasedontheideaofmessageforwarding,inwhicheachnodeinthenetworkgathersinformationfromitsneighborstoupdateitsrepresentation.ThismethodenablesGNNstoeffectivelycapturebothlocalpatternsandlong-rangerelationshipsthroughoutthegraphbypropagatinginformationthroughasetoflayers.Inthefollowingsubsections,wepresentanoverviewaboutsomepopularGNNarchitecturesproposedintheliterature.
2.1.1GraphConvolutionalNetworks(GCNs).GCNs,introducedbyKipfetal.
[12],areaspecializedtype
ofGNNcreatedtoworkwithgraph-baseddata.Thecoreideaistotaketheconceptofconvolution,whichissoeffectiveinimageprocessingwithgridsofpixels,andadaptittotheirregularstructureofgraphs.IncontrasttoconventionalCNNsthatdependonstaticgrids,GCNsexecutelocalizedconvolutionsateachnode,aggregatinginformationfromadjacentnodes.ThisenablesGCNstounderstandthelinksandpatternsinsidethegraphstructureinamannerthatconventionalCNNscan’t.ThepropagationruleforaGCNlayerisrepresentedas:
whereiisthenodebeingprocessed,Niisthesetofnodesthatareneighborsofi,histhemathematical
representationofiatlayerl,wlisthelayer’sweightmatrix,andcijservesasanormalizationfactortoaccountfordifferencesinthenumberofneighbors.
Thegraphconvolutionprocessiscarriedoutrepeatedlyonmanylevels,whichhelpsthemodelunderstandmorecomplicatedconnectionsandhigher-levellinksinthegraphstructure.
2.1.2GraphAttentionNetworks(GATs).In
[13],GATshavebeenproposedbyVelikovi
etal.,whichareatypeofGNNdesignedtoaddresslimitationsintraditionalGNNs.Theyarespeciallydesignedforcomplexconnectionsandirregulargraphstructures.Theirkeyinnovationisanattentionmechanismthatselectivelyaggregatesinformationfromneighboringnodes,allowingthemtofocusonthemostrelevantinputs.Thismethodassignsdifferentweightstoeachneighbor,emphasizingtheimportanceofspecificnodesduringaggregationandimprovingthemodel’sabilitytocapturemeaningfulrelationships.Thecomputationsmade
,Vol.1,No.1,Article.Publicationdate:December2024.
6BenAtitallahetal.
intheGATlayerarepresentedinthefollowingEquation
2:
where,idenotesthetargetnode,N(i)representsthesetofi’sneighbors,andhi(l)istherepresentationofnodeiatlayerl.W(l)istheweightmatrixsharedacrosslayerl,andαijistheattentionweightfortheedgebetweennodesiandj,determinedbyalearnableattentionmechanism.
2.1.3GraphSampleandAggregation(GraphSAGE).GraphSAGE,introducedbyHamiltonetal.in
[13],
isascalableGNNarchitectureforlargegraphs.Itlearnsnodeembeddingsbysamplingandaggregatinginformationfromlocalneighbors,allowinginductivelearningtogeneralizetounseennodes.GraphSAGEconsistsoftwomainparts:embeddinggeneration(forwardpropagation)andparameterlearning.Themodeliterativelytraversesneighborhoodlayersandenablesnodestogatherinformationfromtheirsurroundings.TherepresentationforanodeUatdepthkisupdatedasfollows:
hK)=σ(WK·CONCAT(hK−1),AGGREGATEK({hK−1),∀u∈N(U)})))(3)
where,σisthenon-linearactivationfunction,andWKisthelearnableweightmatrixfordepthk.TheCONCAToperationcombinesho(K−1)withtheaggregateddatafromU’sneighbors,denotedN(U),usingAGGREGATEK,whichcanbeamean,LSTM,orpoolingfunction.ThisiterativeprocessenablesGraphSAGEtocapturecomplexnoderelationshipsinaninductiveandscalableway.
2.2StateSpaceModels(SSMs)
DLhasseenanotabletransformationwiththeemergenceofTransformermodels,whichhaveattaineddominanceinbothcomputervisionandnaturallanguageprocessing.Theirsuccessisattributedtotheself-attentionmechanism,aneffectivestrategythatenhancesmodelunderstandingbyproducinganattentionmatrixbasedonquery,key,andvaluevectors
[14]
.Thismethodologyhastransformedhowmodelsanalyzeandcomprehenddata.However,theTransformerarchitecturefacesanotablechallenge.Itsself-attentionmechanismoperateswithquadratictimecomplexity.Astheinputsequencelengthgrows,thecomputationalrequirementsincreaseexponentiallyandcreateasignificantbottleneck,especiallywhendealingwithverylongsequencesorlargedatasets.Thislimitationhaspushedresearchtodevelopmoreefficientarchitecturesthatcanmaintainthebenefitsofself-attentionwhilescalingmoreeffectivelytomoresignificantinputs.
Inthiscontext,MambawasproposedbyGuetal.
[15]basedonSSMs
.Ithasgainedmuchinterestinrecentyearsduetoitseffectivenessinprovidinggoodperformanceastransformerswhilereducingtheoverallcomplexity.SSMsarewidelyusedtorepresentdynamic
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家教雇佣合同范例
- 医疗器具销售合同范例
- 水果供应合作合同范例
- 武汉商贸职业学院《食品质量安全检测新技术》2023-2024学年第一学期期末试卷
- 武汉轻工大学《教育统计学》2023-2024学年第一学期期末试卷
- 汽车委托服务合同范例
- 泳池设备保养合同范例
- 设备购销简易合同范例
- 中介承租合同范例
- 户外租赁餐具合同范例
- 期末综合复习(试题)-2023-2024学年五年级上册数学人教版
- 《精益生产丰田》课件
- 充电桩竞争格局分析
- 线性规划课后题答案
- 装修工作的进度报告
- 压裂作业质量、安全、环保管理体系与措施
- JGJ120-2012建筑基坑支护技术规程
- 普外科护士长述职报告
- 混凝土组织供应运输售后服务方案
- +山东省泰安市肥城市2023-2024学年七年级上学期期末考试地理试题+
- 国防教育基地建设项目运营方案
评论
0/150
提交评论