2025届福州市第十九中学高考数学倒计时模拟卷含解析_第1页
2025届福州市第十九中学高考数学倒计时模拟卷含解析_第2页
2025届福州市第十九中学高考数学倒计时模拟卷含解析_第3页
2025届福州市第十九中学高考数学倒计时模拟卷含解析_第4页
2025届福州市第十九中学高考数学倒计时模拟卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福州市第十九中学高考数学倒计时模拟卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数在复平面内对应的点在第二象限,则实数的取值范围是()A. B. C. D.2.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为()A. B. C. D.3.将函数的图像向右平移个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,若为奇函数,则的最小值为()A. B. C. D.4.已知Sn为等比数列{an}的前n项和,a5=16,a3a4=﹣32,则S8=()A.﹣21 B.﹣24 C.85 D.﹣855.我国古代数学名著《九章算术》有一问题:“今有鳖臑(biēnaò),下广五尺,无袤;上袤四尺,无广;高七尺.问积几何?”该几何体的三视图如图所示,则此几何体外接球的表面积为()A.平方尺 B.平方尺C.平方尺 D.平方尺6.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A. B. C. D.7.在中,分别为所对的边,若函数有极值点,则的范围是()A. B.C. D.8.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数﹔最后根据统计数来估计的值.若,则的估计值为()A. B. C. D.9.下列结论中正确的个数是()①已知函数是一次函数,若数列通项公式为,则该数列是等差数列;②若直线上有两个不同的点到平面的距离相等,则;③在中,“”是“”的必要不充分条件;④若,则的最大值为2.A.1 B.2 C.3 D.010.设过抛物线上任意一点(异于原点)的直线与抛物线交于两点,直线与抛物线的另一个交点为,则()A. B. C. D.11.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为 B.复数在复平面内对应的点位于第三象限C.的共轭复数 D.12.如图是一个算法流程图,则输出的结果是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数若关于的不等式的解集是,则的值为_____.14.已知函数的定义域为R,导函数为,若,且,则满足的x的取值范围为______.15.已知,则=___________,_____________________________16.已知数列满足:,,若对任意的正整数均有,则实数的最大值是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:愿意不愿意男生6020女士4040(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82818.(12分)已知函数.(1)当时,求函数的值域;(2)的角的对边分别为且,,求边上的高的最大值.19.(12分)已知椭圆,过的直线与椭圆相交于两点,且与轴相交于点.(1)若,求直线的方程;(2)设关于轴的对称点为,证明:直线过轴上的定点.20.(12分)将棱长为的正方体截去三棱锥后得到如图所示几何体,为的中点.(1)求证:平面;(2)求二面角的正弦值.21.(12分)如图,底面是等腰梯形,,点为的中点,以为边作正方形,且平面平面.(1)证明:平面平面.(2)求二面角的正弦值.22.(10分)在中,.(Ⅰ)求角的大小;(Ⅱ)若,,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

复数,在复平面内对应的点在第二象限,可得关于a的不等式组,解得a的范围.【详解】,由其在复平面对应的点在第二象限,得,则.故选:B.【点睛】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.2、C【解析】

几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,计算得到答案.【详解】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,故几何体的表面积为.故选:.【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.3、C【解析】

根据三角函数的变换规则表示出,根据是奇函数,可得的取值,再求其最小值.【详解】解:由题意知,将函数的图像向右平移个单位长度,得,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,,因为是奇函数,所以,解得,因为,所以的最小值为.故选:【点睛】本题考查三角函数的变换以及三角函数的性质,属于基础题.4、D【解析】

由等比数列的性质求得a1q4=16,a12q5=﹣32,通过解该方程求得它们的值,求首项和公比,根据等比数列的前n项和公式解答即可.【详解】设等比数列{an}的公比为q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,则,则,故选:D.【点睛】本题主要考查等比数列的前n项和,根据等比数列建立条件关系求出公比是解决本题的关键,属于基础题.5、A【解析】

根据三视图得出原几何体的立体图是一个三棱锥,将三棱锥补充成一个长方体,此长方体的外接球就是该三棱锥的外接球,由球的表面积公式计算可得选项.【详解】由三视图可得,该几何体是一个如图所示的三棱锥,为三棱锥外接球的球心,此三棱锥的外接球也是此三棱锥所在的长方体的外接球,所以为的中点,设球半径为,则,所以外接球的表面积,故选:A.【点睛】本题考查求几何体的外接球的表面积,关键在于由几何体的三视图得出几何体的立体图,找出外接球的球心位置和半径,属于中档题.6、D【解析】

先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.【详解】设四个支点所在球的小圆的圆心为,球心为,由题意,球的体积为,即可得球的半径为1,又由边长为的正方形硬纸,可得圆的半径为,利用球的性质可得,又由到底面的距离即为侧面三角形的高,其中高为,所以球心到底面的距离为.故选:D.【点睛】本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.7、D【解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.8、B【解析】

先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.【详解】因为,都是区间上的均匀随机数,所以有,,若,能与构成锐角三角形三边长,则,由几何概型的概率计算公式知,所以.故选:B.【点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.9、B【解析】

根据等差数列的定义,线面关系,余弦函数以及基本不等式一一判断即可;【详解】解:①已知函数是一次函数,若数列的通项公式为,可得为一次项系数),则该数列是等差数列,故①正确;②若直线上有两个不同的点到平面的距离相等,则与可以相交或平行,故②错误;③在中,,而余弦函数在区间上单调递减,故“”可得“”,由“”可得“”,故“”是“”的充要条件,故③错误;④若,则,所以,当且仅当时取等号,故④正确;综上可得正确的有①④共2个;故选:B【点睛】本题考查命题的真假判断,主要是正弦定理的运用和等比数列的求和公式、等差数列的定义和不等式的性质,考查运算能力和推理能力,属于中档题.10、C【解析】

画出图形,将三角形面积比转为线段长度比,进而转为坐标的表达式。写出直线方程,再联立方程组,求得交点坐标,最后代入坐标,求得三角形面积比.【详解】作图,设与的夹角为,则中边上的高与中边上的高之比为,,设,则直线,即,与联立,解得,从而得到面积比为.故选:【点睛】解决本题主要在于将面积比转化为线段长的比例关系,进而联立方程组求解,是一道不错的综合题.11、D【解析】

利用的周期性先将复数化简为即可得到答案.【详解】因为,,,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.12、A【解析】

执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案.【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,;第2次循环:满足判断条件,;第3次循环:满足判断条件,;不满足判断条件,输出计算结果,故选A.【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据题意可知的两根为,再根据解集的区间端点得出参数的关系,再求解即可.【详解】解:因为函数,关于的不等式的解集是的两根为:和;所以有:且;且;;故答案为:【点睛】本题主要考查了不等式的解集与参数之间的关系,属于基础题.14、【解析】

构造函数,再根据条件确定为奇函数且在上单调递减,最后利用单调性以及奇偶性化简不等式,解得结果.【详解】依题意,,令,则,故函数为奇函数,故函数在上单调递减,则,即,故,则x的取值范围为.故答案为:【点睛】本题考查函数奇偶性、单调性以及利用函数性质解不等式,考查综合分析求解能力,属中档题.15、−196−3【解析】

由二项式定理及二项式展开式通项得:,令x=1,则1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【详解】由二项式(1−2x)7展开式的通项得,则,令x=1,则,所以a0+a1+…+a7=−3,故答案为:−196,−3.【点睛】本题考查二项式定理及其通项,属于中等题.16、2【解析】

根据递推公式可考虑分析,再累加求出关于关于参数的关系,根据表达式的取值分析出,再用数学归纳法证明满足条件即可.【详解】因为,累加可得.若,注意到当时,,不满足对任意的正整数均有.所以.当时,证明:对任意的正整数都有.当时,成立.假设当时结论成立,即,则,即结论对也成立.由数学归纳法可知,对任意的正整数都有.综上可知,所求实数的最大值是2.故答案为:2【点睛】本题主要考查了根据数列的递推公式求解参数最值的问题,需要根据递推公式累加求解,同时注意结合参数的范围问题进行分析.属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有99%把握认为愿意参加新生接待工作与性别有关;(2)详见解析.【解析】

(1)计算得到,由此可得结论;(2)根据分层抽样原则可得男生和女生人数,由超几何分布概率公式可求得的所有可能取值所对应的概率,由此得到分布列;根据数学期望计算公式计算可得期望.【详解】(1)∵的观测值,有的把握认为愿意参加新生接待工作与性别有关.(2)根据分层抽样方法得:男生有人,女生有人,选取的人中,男生有人,女生有人.则的可能取值有,,,,,的分布列为:.【点睛】本题考查独立性检验、分层抽样、超几何分布的分布列和数学期望的求解;关键是能够明确随机变量服从于超几何分布,进而利用超几何分布概率公式求得随机变量每个取值所对应的概率.18、(1).(2)【解析】

(1)由题意利用三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域,得出结论.(2)由题意利用余弦定理、三角形的面积公式、基本不等式求得的最大值,可得边上的高的最大值.【详解】解:(1)∵函数,当时,,.(2)中,,∴.由余弦定理可得,当且仅当时,取等号,即的最大值为3.再根据,故当取得最大值3时,取得最大值为.【点睛】本题考查降幂公式、两角和的正弦公式,考查正弦函数的性质,余弦定理,三角形面积公式,所用公式较多,选用恰当的公式是解题关键,本题属于中档题.19、(1)或;(2)见解析【解析】

(1)由已知条件利用点斜式设出直线的方程,则可表示出点的坐标,再由的关系表示出点的坐标,而点在椭圆上,将其坐标代入椭圆方程中可求出直线的斜率;(2)设出两点的坐标,则点的坐标可以表示出,然后直线的方程与椭圆方程联立成方程,消元后得到关于的一元二次方程,再利用根与系数的关系,再结合直线的方程,化简可得结果.【详解】(1)由条件可知直线的斜率存在,则可设直线的方程为,则,由,有,所以,由在椭圆上,则,解得,此时在椭圆内部,所以满足直线与椭圆相交,故所求直线方程为或.(也可联立直线与椭圆方程,由验证)(2)设,则,直线的方程为.由得,由,解得,,当时,,故直线恒过定点.【点睛】此题考查的是直线与椭圆的位置关系中的过定点问题,计算过程较复杂,属于难题.20、(1)见解析;(2).【解析】

(1)取的中点,连接、,连接,证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得二面角的余弦值,进而可求得其正弦值.【详解】(1)取中点,连接、、,且,四边形为平行四边形,且,、分别为、中点,且,则四边形为平行四边形,且,且,且,所以,四边形为平行四边形,且,四边形为平行四边形,,平面,平面,平面;(2)以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、,,,,设平面的法向量为,由,得,取,则,,,设平面的法向量为,由,得,取,则,,,,,因此,二面角的正弦值为.【点睛】本题考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论