1.5 有理数的乘法和除法 能力提升 湘教版数学七年级上册(原卷版)_第1页
1.5 有理数的乘法和除法 能力提升 湘教版数学七年级上册(原卷版)_第2页
1.5 有理数的乘法和除法 能力提升 湘教版数学七年级上册(原卷版)_第3页
1.5 有理数的乘法和除法 能力提升 湘教版数学七年级上册(原卷版)_第4页
1.5 有理数的乘法和除法 能力提升 湘教版数学七年级上册(原卷版)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第1页(共1页)试卷1.5有理数的乘法和除法—能力提升—一、选择题1、[中]有理数a,b,c满足abc≠0,a<b且a+b<0,,那么的值为()A.0 B.2 C.0或2 D.0或﹣22、[中]我国明朝数学家程大位所著的《算法统宗》中介绍了一种计算乘法的方法,称为“铺地锦”.例如,如图1所示,计算31×47,首先把乘数31和47分别写在方格的上面和右面,然后以31的每位数字分别乘以47的每位数字,将结果计入对应的格子中(如3×4=12的12写在3下面的方格里,十位1写在斜线的上面,个位2写在斜线的下面),再把同一斜线上的数相加,结果写在斜线末端,最后把得数依次写下来是1457,即31×47=1457.如图2,用“铺地锦”的方法表示两个两位数相乘,则a的值是()A.5 B.4 C.3 D.23、[中]()的倒数比它的本身大.A.假分数 B.真分数 C.带分数4、[中]已知43×47=2021,则(﹣43)的值为()A.2021 B.﹣2021 C. D.﹣5、[中]如图,数轴上A、B、C三点所表示的数分别为a、b、c,满足a+b﹣c=0且AB=BC.那么下列各式正确的是()A.a+c<0 B.ac>0 C.bc<0 D.ab<06、[中]乘积幻方,每一行之积、每一列之积、对角线上的乘积都相等,如图所示的乘积幻方中,x与y的值分别是()A.4和8 B.4和20 C.15和25 D.20和507、[中]格子乘法是由明代数学家吴敬在其撰写的《九章算法类比大全》一书中提出,例如图1所示计算89×65,将被乘数89计入上行,乘数65计入右行.然后以乘数65的每位数字乘被乘数89的每个数字,将结果计入相应格子中,最后斜行加起来,即得5785.现用格子乘法进行如图2计算,问:根据该计算得到的最终结果是()A.3056 B.3058 C.4056 D.40588、[中]有A,B两种卡片各4张,A卡片正、反两面分别写着1和0,B卡片正、反两面分别写着2和0,甲、乙两人从中各拿走4张卡片并摆放在桌上,发现各自的4张卡片向上一面的数字和相等:两人各自将所有卡片另一面朝上,则甲的4张卡片数字和减小了1,乙的4张卡片数字和增加了1,则甲拿取A卡片的数量为()A.1张 B.2张 C.3张 D.4张二、填空题9、[中]若ab>0,则的值为.10、[中]三个有理数a、b、c满足abc>0,则++的值为.11、[中]任何一个正整数n都可以进行这样的分解:(s、t是正整数,且s≤t),如果在n的所有这种分解中两因数之差的绝对值最小,我们就称是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:①F(2)=;②F(48)=;③F(n2+n)=;④若n非0整数,则F(n2)=1,其中正确说法的是(将正确答案的序号填写在横线上).12、[中]一个能被2和3整除的四位数,它的千位上的数是奇数又是合数,它的百位上的数不是素数也不是合数,它十位上的数是最小的素数,个位上的数是.13、[中]﹣1.25的倒数是.14、[中]若两个数的积为﹣1,我们称它们互为负倒数,则0.125的负倒数是.15、[中]的倒数是.16、[中]下列说法:①若a,b互为相反数,则=﹣1;②如果|a+b|=|a|+|b|,则ab≥0;③若x表示一个有理数,则|x+2|+|x+5|+|x﹣2|的最小值为7;④若abc<0,a+b+c>0,则的值为﹣2.其中一定正确的结论是(只填序号).三、解答题17、[中]我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数.受此启发,按照一个正整数被3除的余数把正整数分成三类:如果一个正整数被3除余数为1,则这个正整数属于A类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B类,例如2,5,8等;如果一个正整数能被3整除,则这个正整数属于C类,例如3,6,9等.(1)2022属于类(填A,B或C);(2)①从B类数中任取两个数,则它们的和属于类(填A,B或C);②从A类数中任意取出2021个数,从B类数中任意取出2022个数,从C类数中任意取出k个数(k为正整数),把它们都加起来,则最后的结果属于类(填A,B或C);(3)从A类数中任意取出m个数,从B类数中任意取出n个数(m,n为正整数),把它们都加起来,若最后的结果属于A类,则下列关于m,n的叙述正确的是(填序号).①m属于A类;②m+2n属于A类;③m,n不属于同一类;④|m﹣n|属于A类.18、[中]计算:×2÷3.19、[中]在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的(探究).(提出问题)两个有理数a、b满足a、b同号,求的值.解:①若a、b都是正数,即a>0,b>0,|a|=a,|b|=b,则==1+1=2;②若a、b都是负数,即a<0,b<0,有|a|=﹣a,|b|=﹣b,则==(﹣1)+(﹣1)=﹣2,所以的值为2或﹣2.(探究)请根据上面的解题思路解答下面的问题:(1)两个有理数a、b满足a、b异号,求的值;(2)已知|a|=3,|b|=2,|c|=1,且a<b<c,求a+b+c的值.20、[中]已知:﹣5,1,﹣3,5,﹣2中,任何两个数相乘,最大的积为m,最小的积为n.(1)求m,n的值;(2)若|x+n|=m,求x的值.21、[中]对于点M,N,给出如下定义:在直线MN上,若存在点P,使得MP=kNP(k>0),则称点P是“点M到点N的k倍分点”.例如:如图,点Q1,Q2,Q3在同一条直线上,Q1Q2=3,Q2Q3=6,则点Q1是点Q2到点Q3的倍分点,点Q1是点Q3到点Q2的3倍分点.已知:在数轴上,点A,B,C分别表示﹣4,﹣2,2.(1)点B是点A到点C的倍分点,点C是点B到点A的倍分点;(2)点B到点C的3倍分点表示的数是;(3)点D表示的数是x,线段BC上存在点A到点D的2倍分点,写出x的取值范围.22、[中]小聪是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识,脑洞大开地定义出“有理数的除方”概念.于是规定:若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小聪把5÷5÷5记作f(3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f(4,﹣2).(1)直接写出计算结果,f(4,)=,f(5,3)=;(2)关于“有理数的除方”下列说法正确的是.(填序号)①f(6,3)=f(3,6);②f(2,a)=1(a≠0);③对于任何正整数n,都有f(n,﹣1)=1;④对于任何正整数n,都有f(2n,a)<0(a<0).(3)小明深入思考后发现:“除方”运算能够转化成乘方运算,且结果可以写成幂的形式,请推导出“除方”的运算公式f(n,a)(n为正整数,a≠0,n≥2),要求写出推导过程将结果写成幂的形式;(结果用含a,n的式子表示)(4)请利用(3)问的推导公式计算:f(5,3)×f(4,)×f(5,﹣2)×f(6,).23、[中]已知非零有理数a,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论