版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页上海海洋大学《海报设计专题设计》
2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共20个小题,每小题2分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的图像增强任务中,旨在改善图像的质量。假设一张低光照条件下拍摄的照片需要增强。以下关于图像增强方法的描述,哪一项是错误的?()A.可以通过直方图均衡化方法增强图像的对比度B.基于滤波的方法能够去除图像中的噪声,同时增强细节C.图像增强可以无限制地提高图像的质量,不存在过度增强的问题D.深度学习中的生成对抗网络(GAN)也可以用于图像增强2、计算机视觉在文物保护和修复中的应用逐渐增多。假设要对一幅古老的绘画进行数字化修复和增强,以下关于颜色恢复的挑战,哪一项是最为显著的?()A.由于年代久远,原画作的颜色信息缺失严重B.不同区域的颜色褪色程度不一致,难以统一恢复C.缺乏对原画作创作时所用颜料的了解,难以准确还原颜色D.修复过程中可能引入新的颜色偏差,影响修复效果3、在计算机视觉的行人重识别任务中,需要在不同摄像头拍摄的图像中识别出同一个行人。假设我们要在一个大型商场的监控系统中实现行人重识别,以下哪种特征和模型能够提高识别的准确率和跨摄像头的泛化能力?()A.基于颜色和纹理的特征B.基于深度学习的全局特征和度量学习C.基于形状和轮廓的特征D.基于步态和姿势的特征4、在计算机视觉的目标跟踪任务中,假设要跟踪一个在人群中移动的物体。以下关于跟踪算法的选择,哪一项是需要着重考虑的?()A.算法对目标外观变化的适应性B.算法的计算复杂度,越低越好C.算法是否能够处理多个同时移动的目标D.算法在处理静态场景时的性能5、对于图像的超分辨率重建任务,假设要将一张低分辨率的图像恢复为高分辨率图像,同时保留图像的细节和清晰度。这张低分辨率图像可能存在模糊和失真。以下哪种方法在处理这种情况时可能表现更好?()A.基于插值的方法,如双线性插值和双三次插值B.基于深度学习的超分辨率重建模型,如SRCNNC.对低分辨率图像进行简单的锐化处理D.不进行任何处理,直接使用低分辨率图像6、对于图像的语义理解任务,假设要理解一张图像所表达的场景和事件,例如判断一张图像是在举行婚礼还是在举办音乐会。图像中的信息可能比较隐晦和复杂。以下哪种方法可能有助于提高语义理解的准确性?()A.构建图像的语义图,分析物体之间的关系B.只关注图像中的主要物体,忽略背景信息C.对图像进行简单的分类,不进行深入的语义分析D.随机猜测图像的语义7、在计算机视觉的图像超分辨率重建中,提高低分辨率图像的清晰度。假设要将一张模糊的图像重建为清晰的高分辨率图像,以下关于图像超分辨率重建方法的描述,哪一项是不正确的?()A.基于插值的方法通过在像素之间插入新的值来增加图像的分辨率,但可能会导致图像模糊B.基于深度学习的方法能够学习低分辨率图像和高分辨率图像之间的映射关系,重建出更清晰的图像C.图像超分辨率重建可以无限制地提高图像的分辨率,不受原始图像信息的限制D.为了获得更好的重建效果,可以结合多种超分辨率重建方法或使用先验知识8、计算机视觉中的姿态估计任务是估计人体或物体在三维空间中的姿态。假设要估计一个人体模特的姿态。以下关于姿态估计的描述,哪一项是不正确的?()A.可以通过关键点检测和关节角度计算来估计人体姿态B.深度学习中的卷积神经网络可以直接预测人体姿态的参数C.姿态估计在虚拟现实和增强现实等应用中具有重要作用D.姿态估计的结果总是非常准确,不受人体遮挡和复杂动作的影响9、计算机视觉在安防监控领域有广泛应用。假设要通过监控摄像头实时检测人群中的异常行为,以下关于实时性和准确性的平衡,哪一项是最为关键的?()A.优先保证实时性,即使准确性略有降低B.优先保证准确性,允许一定的延迟C.不考虑实时性和准确性,只要能检测出异常行为即可D.完全无法平衡实时性和准确性,只能根据具体情况选择其一10、在进行计算机视觉的三维重建时,需要从多个视角的图像中恢复物体的三维形状和结构。假设要对一个复杂的古建筑进行三维重建,图像采集存在视角偏差和部分遮挡。以下哪种三维重建方法在处理这种不完整和有噪声的数据时效果较好?()A.基于立体视觉的重建B.基于运动恢复结构(SfM)的重建C.基于激光扫描的重建D.基于深度学习的重建11、物体检测是计算机视觉中的一项关键任务。假设一个智能监控系统需要检测场景中的特定物体,如背包、自行车等。以下关于物体检测算法的描述,哪一项是不正确的?()A.基于深度学习的物体检测算法能够同时检测多个物体,并给出它们的位置和类别B.可以通过滑动窗口的方法在图像中搜索可能的物体区域,然后进行分类判断C.物体检测算法需要对大量的标注图像进行训练,以学习不同物体的特征D.无论物体的大小、形状和颜色如何变化,物体检测算法都能准确检测到12、在计算机视觉的目标跟踪任务中,需要持续跟踪一个或多个运动目标。假设要跟踪一个在操场上跑步的人。以下关于目标跟踪算法的描述,哪一项是不正确的?()A.可以基于特征匹配的方法,在连续的帧中找到目标的相似特征来实现跟踪B.深度学习中的相关滤波算法能够快速准确地跟踪目标,适应目标的外观变化C.目标跟踪算法能够在目标被遮挡或短暂消失后,仍然准确地恢复跟踪D.无论目标的运动速度和轨迹如何复杂,目标跟踪算法都能完美地跟踪13、在计算机视觉的图像分割任务中,假设要对细胞图像进行精细分割。以下关于模型选择的考虑因素,哪一项是不准确的?()A.模型对细胞边界的捕捉能力B.模型在小样本数据上的泛化能力C.模型的训练时间和计算资源需求D.模型的知名度和在学术圈的引用次数14、计算机视觉中的图像语义分割需要为图像中的每个像素分配类别标签。假设要对一张城市街景图像进行语义分割,包括道路、建筑物、车辆和行人等。以下哪种图像语义分割方法在处理这种复杂场景时能够提供更精细的分割结果?()A.全卷积网络(FCN)B.U-NetC.SegNetD.DeepLab15、计算机视觉中的行人重识别是在不同摄像头拍摄的图像或视频中识别出特定的行人。以下关于行人重识别的叙述,不正确的是()A.行人重识别需要提取具有判别性的行人特征,克服视角、光照和姿态的变化B.深度学习方法在行人重识别任务中取得了显著的性能提升C.行人重识别在智能安防、视频监控和人员追踪等领域有重要的应用D.行人重识别技术已经能够在大规模数据集上达到100%的准确率16、在计算机视觉的目标识别任务中,假设目标物体被部分遮挡,以下哪种模型架构可能更有助于恢复被遮挡部分的信息?()A.多层感知机(MLP)B.卷积神经网络(CNN)C.循环神经网络(RNN)D.注意力机制(AttentionMechanism)17、计算机视觉中的行人重识别任务是在不同摄像头中识别出特定的行人。假设要在一个大型火车站中寻找一个走失的儿童。以下关于行人重识别的描述,哪一项是不准确的?()A.可以利用行人的服装颜色、款式和携带物品等特征进行重识别B.深度学习中的度量学习方法可以学习行人的特征表示,提高重识别的准确率C.行人重识别不受行人姿态变化和摄像头视角差异的影响D.可以通过构建大规模的行人数据集进行训练,提升模型的泛化能力18、在计算机视觉的图像修复任务中,假设要修复一张有部分缺失的图像。以下关于图像修复方法的描述,正确的是:()A.基于扩散的图像修复方法能够自然地填充缺失区域,但修复速度慢B.基于样本的图像修复方法可以快速生成修复结果,但容易出现重复纹理C.深度学习中的生成对抗网络(GAN)在图像修复中无法保证修复内容与周围区域的一致性D.所有的图像修复方法都能够完美地恢复出图像缺失部分的真实内容19、在计算机视觉的场景理解任务中,假设要理解一个室内场景的布局和功能,例如判断是办公室还是客厅。以下哪种信息对于准确理解场景是至关重要的?()A.物体的类别和位置B.图像的颜色分布C.图像的拍摄角度D.随机选择图像中的部分区域进行分析20、在计算机视觉的姿态估计任务中,需要确定物体在三维空间中的方向和位置。假设要估计一个机器人手臂的姿态,以实现精确的控制和操作。以下哪种姿态估计方法在处理这种机械结构时准确性更高?()A.基于模型的姿态估计B.基于深度学习的姿态估计C.基于视觉惯性里程计的姿态估计D.基于几何约束的姿态估计二、简答题(本大题共3个小题,共15分)1、(本题5分)简述图像的饱和度调整方法。2、(本题5分)简述图像的色彩匹配方法。3、(本题5分)解释计算机视觉在法律服务中的作用。三、分析题(本大题共5个小题,共25分)1、(本题5分)一款化妆品的促销海报设计吸引眼球,促进销售。请分析促销海报在优惠信息展示、产品效果图呈现、色彩对比运用上的技巧,以及如何激发消费者的购买欲望。2、(本题5分)分析某音乐专辑的封面设计,思考其如何通过图像和文字传达音乐的风格和情感,吸引听众购买和聆听。3、(本题5分)某城市的公共交通系统进行了标识系统的重新设计,新的标识更加清晰、易懂和具有辨识度。请分析其在符号设计、色彩选择、信息层级构建方面的改进,以及如何提高了市民出行的便
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度个人艺术品抵押担保合同书4篇
- 二零二五版智能家居门窗安装与维护服务合同3篇
- 2025年绿色建材水泥采购与施工总承包合同3篇
- 2025年个人股东对外股权转让协议范本与股权变更登记3篇
- 开发需求委托合同(2篇)
- 建筑材料采购分包合同(2篇)
- 2024年注册消防工程师题库参考答案
- 保险产品创新路演模板
- 二零二五年度汽车租赁担保公司合同车辆作为抵押的担保公司服务协议4篇
- 二零二五版特色小吃店转让与加盟协议4篇
- 2025水利云播五大员考试题库(含答案)
- 中药饮片验收培训
- DB34T 1831-2013 油菜收获与秸秆粉碎机械化联合作业技术规范
- 残疾军人新退休政策
- 白酒代理合同范本
- 税前工资反算表模板
- 2019级水电站动力设备专业三年制人才培养方案
- 肝素诱导的血小板减少症培训课件
- 抖音认证承诺函
- 高等数学(第二版)
- 四合一体系基础知识培训课件
评论
0/150
提交评论