版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
倒卖拉黑,关注更新免费领取,淘宝唯一每月更新店铺:知二教育倒卖拉黑,关注更新免费领取,淘宝唯一每月更新店铺:知二教育6.2.2排列数一、教材分析本节课选自《2019人教A版高中数学选择性必修第三册》,第六章《计数原理》,本节课主本节课主要学习排列与排列数。排列与组合是在学习了两个计数原理之后,由于排列、组合及二项式定理的研究都是以两个计数原理为基础,同时排列和组合又能进一步简化和优化计数问题。教学的重点是排列的理解,利用计数原理推导排列数公式,难点是运用排列解决实际问题。二、教学目标课程目标学科素养A.理解并掌握排列、排列数的概念,能用列举法、树状图法列出简单的排列.B.掌握排列数公式及其变式,并能运用排列数公式熟练地进行相关计算.C.掌握有限制条件的排列应用题的一些常用方法,并能运用排列的相关知识解一些简单的排列应用题.1.数学抽象:排列的概念2.逻辑推理:排列数的性质3.数学运算:运用排列数解决计数问题4.数学建模:将计数问题转化为排列问题 三、教学重难点重点:理解排列的定义及排列数的计算难点:运用排列解决计算问题四、教学过程教学过程教学设计意图核心素养目标温故知新两个原理的联系与区别1.联系:分类加法计数原理和分步乘法计数原理都是解决计数问题最基本、最重要的方法.2.区别
分类加法计数原理分步乘法计数原理区别一完成一件事共有n类办法,关键词是“分类”完成一件事共有n个步骤,关键词是“分步”区别二每类办法中的每种方法都能独立地完成这件事,它是独立的、一次的且每种方法得到的都是最后结果,只需一种方法就可完成这件事除最后一步外,其他每步得到的只是中间结果,任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有各个步骤都完成了,才能完成这件事区别三各类办法之间是互斥的、并列的、独立的各步之间是关联的、独立的,“关联”确保不遗漏,“独立”确保不重复一、排列数与排列数公式1.排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号Anm2.排列数公式:Anm=n(n-1)(n-2)…(n-m+1)=n!(n-m)!,这里m,n3.全排列和阶乘:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列.这时,排列数公式中m=n,即有Ann=n(n-1)(n-2)×…×3×2×1.也就是说,将n个不同的元素全部取出的排列数,等于正整数1到n的连乘积.正整数1到n的连乘积,叫做n的阶乘,用n!表示.于是,n个元素的全排列数公式可以写成Ann=n!.另外,我们规定,问题3.你认为“排列”和“排列数”是同一个概念吗?它们有什么区别?“排列”与“排列数”是两个不同的概念,一个排列是指“从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列”,它不是一个数,而是具体的一件事.“排列数”是指“从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数”,它是一个数.例3.计算:(1)A解:根据排列数公式,可得(1)A73(2)A74(3)A77(4)A由例3可以看出,A77A观察这两个结果,从中你发现它们的共性了吗?事实上,A
==An例4.用0~9这10个数字,可以组成多少个没有重复数字的三位数?分析:在0~9这10个数字中,因为0不能在百位上,而其他9个数字可以在任意数位上,因此0是一个特殊的元素。一般地,我们可以从特殊元素的位置入手来考虑问题。解法1:由于三位数的百位上的数字不能是0,所以可以分两步完成:第1步,确定百位上的数字可以从1~9这9个数字中取出1个,有A91种取法;第2步,确定十位和个位上的数字,可以从剩下的9个数中取2个,有A9根据分步乘法计数原理,所求的三位数的个数为A91×A9解法2:如图,符合条件的三位数可以分成三类:第1类,每一位数字都不是0的三位数,可以从1~9这9个数字中取出3个,有A93种取法;第2类,个位上的数字是0的三位数,可以从剩下的9个数中取出2个放在百位和十位,有A92种取法;第3类,十位上的数字是0的三位数,可以从剩下的9个数字中取出2个放在百位和个位,有A92种取法解法3:从0~9这10个数字中选取3个的排列数为A103,其中0在百位上的排列数为A9即所求三位数的个数为A103-A921.此类题目从不同的视角可以选择不同的方法,我们用各种方法解决这个题的目的是:希望通过对本题的感悟,能掌握更多的解决这类问题的方法.2.元素分析法最基本,位置分析法对重要元素区别对待,间接法对对立面比较容易求解的题目特别实用.跟踪训练有语文、数学、英语、物理、化学、生物6门课程,从中选4门安排在上午的4节课中,其中化学不排在第四节,共有多少种不同的安排方法?解:(方法一分类法)分两类:第1类,化学被选上,有A31第2类,化学不被选上,有A54故共有A31A53(方法二分步法)第1步,第四节有A51种排法;第2步,其余三节有A53种排法,故共有A5(方法三间接法)从6门课程中选4门安排在上午,有A64种排法,而化学排第四节,有A53种排法,故共有A6通过引导学生回顾计数原理,进一步比较分析加深对两个计数原理得理解。通过具体问题,分析、比较、归纳出对排列的概念。发展学生数学运算,数学抽象和数学建模的核心素养。在典例分析和练习中让学生熟悉排列和排列数的概念,进而灵活运用排列数解决问题。发展学生逻辑
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 政教处德育工作计划范文
- 禁止吸烟工作计划禁止吸烟
- 实验小学2025年学校工作计划
- 8中医科年度工作计划
- 个人工作提升计划清单应用清单范例
- 银行员工周工作计划
- 《骨折术后功能锻炼》课件
- 突发环境事件应急预案合同模板
- 焊制杂粮仓合同范本
- 天津大学接收一般国内访问学者协议书
- 供应链与生产制造L1-L4级高阶流程规划框架 相关两份资料
- 厨房里的危险课件
- 牛津译林版(2024新版)七年级上册英语Unit 8 单元测试卷(含答案)
- 2024年中国人保行测笔试题库
- GB/T 6553-2024严酷环境条件下使用的电气绝缘材料评定耐电痕化和蚀损的试验方法
- 住建部设计施工合同范本(2024版)
- 公路养护设计文件编制指南
- 冷链物流配送全流程优化方案
- Unit2Section A 1a-2b课件2024-2025学年人教版英语九年级全册
- office操作技巧手册系列-excel
- 2023-2024学年全国小学二年级下语文人教版期末考试试卷(含答案解析)
评论
0/150
提交评论