下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
说题稿原题已知:如图,AD垂直平分BC,D为垂足,DM^AC,DN±AB,M,N分别为垂足,求证:DM=DN一、说背景与价值本题选自八年级上第一章《三角形的初步知识》之《1.5三角形全等的判定4》的课内练习2。解决此题涉及的知识有垂直的定义,垂直平分线的定义及性质,三角形全等的判定,角平分线的性质,三角形的面积等。本习题是在学生学习三角形全等的判定定理“八八5”,及角平分线的性质的基础上给出的。课本设置此练习的目的旨在巩固三角形全等的判定及角平分线的性质。大部分学生想到利用三角形全等,然而解题的方法较多,需要学生发散思维,充分联系已知与求证,综合运用已学的知识来解决,在众多的方法中进行选优,从而获得一定的解题经验。二、说教学与改进学生已经学会了三角形全等的判定定理“SSS”,“SAS”,“ASA”,“AAS”,对于证明相等的线段,基本上具备了解决此题的知识储备和技能。而学生往往会思维定势,联想到证明三角形全等,而忽视了此时证明的是垂线段这个重要信息,缺乏相应的想象。学生可能的做法:1、先证明△ADC^^ADB得NB=NC,再证明△DCM^ADBN,得到DM=DN;2、先证明△ADC^^ADB得NCAD=NBAD,再证明△DAM^^DAN,得到DM=DN;3、先证明△ADC^^ADB得AD是角平分线,再利用角平分线的性质,得到DM=DN;4、先由中垂线的性质证明AB=AC,再由三角形的中线将三角形的面积二等分,得S =S,由DM^AC,DNLAB,得到DM=DN。AADB AADC在原先的教学中,让学生思考后回答,发现大部分学生是第1,2种解法,很少出现第3,4的解法,然后再追问,还有其他的方法吗?能利用今天学过的知识来解决吗?能利用角平分线的性质吗?终于有了第3种方法,可是学生缺乏想象,这样的教学效果不好。针对很少学生想出方法3,方法4,以及充分发挥这道题目的价值,我在第二节课时对教学进行了如下的改进。首先是讲解角平分线的性质时做好铺垫,在讲解角平分线时,引导学生理解角平分线上的点到角两边的距离相等,这个距离指的是垂线段的长度。以及应用角平分线性质时具备3个条件:角平分线,两条垂线段。其次在讲解时让学生说出各自的解法,当大部分学生出现前两种方法时,进行如下的引导启发。引导关注条件,所求证的DM=DN,与它相关的条件是什么?DM^AC,DNLAB,发现所证明的两条线段与众不同,它们是垂线段,再启发学生对垂线段展开联想。由“垂线段”能联想到什么?这时学生积极思考,而且有有惊喜。有了刚才的铺垫和现在的启发,有学生联想到了刚学过的角平分线的性质。问题转化为证明AD是NBAC的平分线。惊喜的是有的学生在启发引导下,由垂线段联想到了三角形的高,进而联想到三角形的面积。由中线将三角形的面积二等分得S =S,要证DM=DN,只需证明AB=AC。AADBAADC通过此题,有什么收获?对于这几种方法,你喜欢哪一种?最欣赏哪一种?师生共同提炼:1、证明相等的线段,一般可通过证明两条线段所在的三角形全等。2、对于证明垂线段相等时,可联想到角平分线的性质或利用三角形面积等。3、对解题方法进行比较,让学生从中选优,体现最优化思想。有些学生喜欢利用三角形全等,因为他最拿手,有些学生喜欢利用角平分线的性质,因为它最直接,有些学生喜欢利用等积法,因为解法巧妙,而在几何教学中我们也经常利用等积法,如可由面积相等这个等量关系来解决问题,也可以利用面积相等进行等积变形,改变图形的形状以便于求解,是个非常巧妙的方法。所以我对此进行有关计算,推理的拓展与命题。设计意图:让学生养成解题后反思的习惯,促进学生会反思,形成一定的解题经验,让学生选优体现解题方法的优化。三、说拓展与命题拓展1 已知在Rt△ABD中,AD=4,BD=3,DN±AB,N为垂足,则DN= 设计意图:在原题的基础上拓展,渗透等积法。
拓展2已知:如图,在4ABC中,AB=AC=5,BC=6,D为边BC上一点,DM±AC,DN±AB,M,N分别为垂足,随着点D在线段上运动,DM+DN的值是否发生改变;若改变,说出变化的情况,若不改变,求出它的值。在原题的基础上改变点D的位置,还是在BC上,但是动点,判断这两条垂线段的和会不会改变?此时学生很难想到通过三角形的全等,但会“截长补短”的学生可能会解决;而利用等积法来解决,是非常巧妙的做法。实质上所求的垂线段的和就是一腰上的高。设计意图:改变条件,使原来的点变成边上的动点,此时学生很难想到通过三角形的全等来解决问题,而利用等积法来解决,从而发展学生解决问题的能力。.拓展3某数学兴趣小组组织了以“等积变形”为的主题的课题研究。第1小组发现:如图(1),点A、点B在直线l上,点C、点D在直线l上,若了[,则S二abc=S4bd;反之
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版风险投资协议规范文本版B版
- 2025江苏建筑安全员B证考试题库
- 2024有关销售的合同
- 2024暑期辅导班教学秩序维护与学生安全协议3篇
- 国际马拉松赛策划实施方案报告
- 2024版车辆过户协议书范本
- 2025河北建筑安全员知识题库
- 二零二五年度城市综合体安保外包合同范例
- 2024材料费用滤袋合同采购
- 儿童教育课程开发合同
- 新版医务人员法律法规知识培训课件
- 2024年土地市场研究分析服务协议
- 物业管理公文写作培训
- 2024期货反洗钱培训
- 2023医疗质量安全核心制度要点释义(第二版)对比版
- 生态农业示范基地项目可行性研究报告1
- 家庭教育大讲堂实施方案
- 园林绿化工职业技能竞赛理论考试试题题库及答案
- 部编版《道德与法治》四年级下册教材解读与分析文档
- 2024-2030年中国机场跑道异物碎片(FOD)检测系统行业市场发展趋势与前景展望战略研究报告
- 特殊消防系统工程施工方案
评论
0/150
提交评论