《等腰三角形的轴对称性(2)》参考课件1_第1页
《等腰三角形的轴对称性(2)》参考课件1_第2页
《等腰三角形的轴对称性(2)》参考课件1_第3页
《等腰三角形的轴对称性(2)》参考课件1_第4页
《等腰三角形的轴对称性(2)》参考课件1_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.5等腰三角形的轴对称性(2)等腰三角形的判定

在△ABC中,AB=AC,倘若不留神,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,请问,有没有办法把原来的等腰三角形画出来?ABCA情境引入ABC如图,位于海上B、C两处的两艘救生船接到A处遇险船只的报警,当时测得∠B=∠C.如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?等腰三角形的判定1新知探究已知:如图,在△ABC中,∠B=∠C,那么它们所对的边AB和AC有什么数量关系?【建立数学模型】CAB做一做:画一个△ABC,其中∠B=∠C=30°,请你量一量AB与AC的长度,它们之间有什么数量关系,你能得出什么结论?AB=AC你能验证你的结论吗?新知探究在△ABD与△ACD,∠1=∠2,∴△ABD

≌△ACD.∠B=∠C,AD=AD,∴AB=AC.过A作AD平分∠BAC交BC于点D.证明:CAB21D((新知探究∴

AC=AB.()∵∠B=∠C,()★等腰三角形的判定方法

如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).已知等角对等边在△ABC中,▼应用格式:BCA((这也是判定一个三角形是等腰三角形的根据之一.即△ABC为等腰三角形.新知探究ABCD21∵∠1=∠2,∴BD=DC(等角对等边).∵∠1=∠2,

∴DC=BCABCD21(等角对等边).错,因为都不是在同一个三角形中.辨一辨:如图,下列推理正确吗?新知探究求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:如图,∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.

证明:∵AD∥BC,∴∠1=∠B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等).

又∵∠1=∠2,∴∠B=∠C,∴AB=AC(等角对等边).ABCE((12D例1典例解析

已知:如图,AD∥BC,BD平分∠ABC.求证:AB=AD.BADC证明:∵AD∥BC,∴∠ADB=∠DBC.∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD.总结:平分角+平行=等腰三角形例2典例解析∴∠EDB=∠EBD,∴BE=DE,△EBD是等腰三角形.【变式】如图,把一张长方形的纸沿着对角线折叠,重合部分是一个等腰三角形吗?为什么?BCADE解:重合部分是一个等腰三角形.由折叠可知,∠EBD=∠CBD.∵AD∥BC,∴∠EDB=∠CBD,典例解析1.在△ABC中,∠A和∠B的度数如下,能判定△ABC是等腰三角形的是()A.∠A=50°,∠B=70°B.∠A=70°,∠B=40°C.∠A=30°,∠B=90°D.∠A=80°,∠B=60°B2.如图,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD等于_______.3cm练一练典例解析已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.ah作法:(1)作线段AB=a.(2)作线段AB的垂直平分线MN,交AB于点D.(3)在MN上取一点C,使DC=h.(4)连结AC、BC,则△ABC即为所求.ABCMND例3典例解析如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的平分线,AE与CD交于点F.求证:△CEF是等腰三角形.证明:在△ABC中,∵∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.例4典例解析方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.典例解析如图,在△ABC中,AB=AC,∠ABC和∠ACB的平分线交于点O.过O作EF∥BC交AB于E,交AC于F.探究EF、BE、FC之间的关系.解:EF=BE+CF.理由如下:∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO.

∵BO、CO分别平分∠ABC、∠ACB,∴∠CBO=∠ABO,∠BCO=∠ACO,∴∠EOB=∠ABO,∠FOC=∠ACO,∴BE=OE,CF=OF,∴

EF=EO+FO=BE+CF.ABCOEF例5典例解析方法总结:判定线段之间的数量关系,一般做法是通过全等或利用“等角对等边”,运用转化思想,解决问题.典例解析1.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有(

)A.5个B.4个C.3个D.2个2.一个三角形的一个外角为130°,且它恰好等于一个不相邻的内角的2倍,则这个三角形是()A.钝角三角形B.直角三角形C.等腰三角形D.等边三角形CA当堂练习13.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有()A.1个B.2个C.3个D.4个OabDA当堂练习4.如图,已知∠A=36°,∠DBC=36°,∠C=72°,则∠DBC=_____,∠BDC=_____,图中的等腰三角形有___________________________.36°72°△ABC、△DBA、△BCDABCD当堂练习5.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为_____.9当堂练习6.如图,上午10时,一条船从A处出发以20海里每小时的速度向正北航行,中午12时到达B处,从A、B望灯塔C,测得∠NAC=40°,∠NBC=80°.求从B处到灯塔C的距离.解:∵∠NBC=∠A+∠C,∴∠C=80°-40°=40°,∴∠C=∠A,∴BA=BC(等角对等边).∵AB=20×(12-10)=40(海里),∴BC=40海里.即B处距离灯塔C40海里.80°40°NBAC北当堂练习7.已知:如图,四边形ABCD中,AB=AD,∠B=∠D.

求证:BC=CD.证明:连结BD.∵AB=AD,∴∠ABD=∠ADB.∵∠ABC=∠ADC,∴∠ABC-∠A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论