四川省部分名校2024届高三上学期期末联合考试数学试题(文)(解析版)_第1页
四川省部分名校2024届高三上学期期末联合考试数学试题(文)(解析版)_第2页
四川省部分名校2024届高三上学期期末联合考试数学试题(文)(解析版)_第3页
四川省部分名校2024届高三上学期期末联合考试数学试题(文)(解析版)_第4页
四川省部分名校2024届高三上学期期末联合考试数学试题(文)(解析版)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高级中学名校试卷PAGEPAGE1四川省部分名校2024届高三上学期期末联合考试数学试题(文)一、选择题1.集合的一个真子集可以为()A. B. C. D.【答案】C【解析】,故A错误;,故B错误;因为是集合的子集,但不是真子集,故D错误;是集合的真子集,故C正确.故选:C.2.()A. B. C. D.【答案】A【解析】.故选:A3.某单位有职工500人,其中男性职工有320人,为了解所有职工的身体健康情况,按性别采用分层抽样的方法抽取100人进行调查,则抽取到的男性职工的人数比女性职工的人数多()A.28 B.30 C.32 D.36【答案】A【解析】由题意可知抽取到的男性职工人数为,女性职工人数为,则抽取到的男性职工的人数比女性职工的人数多.故选:A4.()A. B. C. D.【答案】D【解析】故选:D5.某咖啡店门前有一个临时停车位,小轿车在此停车时长超过10分钟就会被贴罚单.某顾客将小轿车停在该车位后,来到该咖啡店消费,忽略该顾客从车内到咖啡店以及以从咖啡店回到车内的时间,若该顾客上午10:02到达咖啡店内,他将在当天上午10:08至上午10:15的任意时刻离开咖啡店回到车内,则他的车不会被贴罚单的概率为()A. B. C. D.【答案】C【解析】他在当天上午10:08至上午10:15的任意时刻离开咖啡店回到车内,其中在10:08至上午10:12的任意时刻离开咖啡店回到车内,他的车不会被贴罚单,故由几何概型可知他的车不会被贴罚单的概率为.故选:C6.若某圆锥的底面半径,且底面的周长等于母线长,则该圆锥的高为()A. B. C. D.【答案】A【解析】设该圆锥的高为,依题意有,则,解得.故选:A7.已知向量,满足,,且,则()A.5 B. C.10 D.【答案】C【解析】由题意可知,且,则,,所以.故选:C.8.在梯形中,,是边长为3的正三角形,则()A. B. C. D.【答案】B【解析】因为是边长为3的正三角形,所以,又,所以,由正弦定理得,则.故选:B.9.设,满足约束条件其中.若的最大值为10,则的值为()A. B. C. D.【答案】A【解析】作出可行域(阴影部分),当直线经过点时,取得最大值,且最大值为,解得.故选:A10.若函数的图象关于直线对称,且是大于的最小正数,则数列的前10项和为()A. B. C. D.【答案】C【解析】因为函数图象关于直线对称,所以,得.又是大于的最小正数,所以,所以数列的前10项和为.故选:C11.已知为定义在上奇函数,当时,,若函数恰有5个零点,则的取值范围是()A. B. C. D.【答案】D【解析】依题意作出的大致图象,如图所示,令,得,当时,,又时,,易知在区间上单调递增,又,所以时,,又为奇函数,所以由图可知,当时,直线与的图象有5个公共点,从而有5个零点,故选:D.12.已知双曲线的两个焦点为为上一点,,,则的离心率为()A. B. C. D.【答案】D【解析】如图,取线段的中点,连接,因为,,所以,且,所以,设,则,所以的离心率.故选:D二、填空题13.若,则______.【答案】【解析】.故答案为:.14.已知圆经过抛物线的焦点,点A在上,若点A到的距离为6,则点A的纵坐标为______.【答案】【解析】依题意可得,由焦半径公式可得,解得故答案为:15.函数的极大值为______.【答案】【解析】,当时,,当时,.所以在上单调递增,在上单调递减,所以的极大值为.故答案为:16.在长方体中,,侧面的面积为6,与底面所成角的正切值为,则该长方体外接球的表面积为____________.【答案】【解析】在长方体中,因为侧面的面积为6,所以,因为与底面所成角的正切值为,所以,结合,可得,所以该长方体外接球的半径为,表面积.故答案为:三、解答题(一)必考题17.某校有3名百米短跑运动员甲、乙、丙,已知甲最近10次百米短跑的时间(单位:s)的数据如下表:第1次第2次第3次第4次第5次第6次第7次第8次第9次第10次时间/s1212.41212.51211.812.211.511.612(1)计算甲这10次百米短跑的时间的平均数与方差;(2)经过计算,乙最近10次百米短跑的时间的平均数和方差分别为12,0.08,丙最近10次百米短跑的时间的平均数和方差分别为12.4,0.08,若要从甲、乙、丙三人中选一人代表学校参加市区的百米短跑比赛,请判断该选择谁,说明你的理由.解:(1)甲这10次百米短跑的时间的平均数为,方差为.(2)因为百米短跑的时间越短,成绩越好,所以从数据的平均水平看,甲与乙的成绩更好.因为方差越大,数据的波动越大,方差越小,数据的波动越小,所以从数据的波动情况看,甲的成绩波动最大,乙和丙的波动水平相当,所以应该选乙参加市区的百米短跑比赛.18.在等差数列中,.(1)求的通项公式;(2)求数列的前项和.解:(1)设的公差为,则,解得,所以;(2)由(1)知,所以.19.如图,在四棱锥中,底面为矩形,平面平面,是边长为2的正三角形,延长至点,使得为线段的中点.(1)证明:平面.(2)若,求四棱锥的体积.(1)证明:连接,交于点,连接,因为底面为矩形,所以为线段的中点.又为线段的中点,所以,因为平面,平面,所以平面.(2)解:记的中点为,连接,,因为是边长为2的正三角形,所以.又平面平面,且平面平面,且平面,所以平面,则.又,,所以平面,则.因为四边形为矩形,所以,则,即,解得.因为为线段的中点,所以到的距离等于到的距离的2倍,所以四棱锥的体积.20.已知椭圆长轴为线段,短轴为线段,四边形的面积为4,且的焦距为.(1)求的标准方程;(2)若直线与相交于两点,点,且的面积小于,求的取值范围.解:(1)由题意可得,解得,所以的标准方程为;(2)点到直线的距离,设,联立方程组,整理得,则,即,,所以,则的面积,得,又,(由三点不共线可得),所以的取值范围是.21.已知函数.(1)求曲线在点处的切线方程;(2)证明:.(1)解:,则,因为,所以曲线在点处的切线方程为,即.(2)证明:的定义域为,要证明,只需证.设函数,则.当时,;当时,.所以.设函数,则,所以恒成立,从而,故(二)选考题[选修4-4:坐标系与参数方程]22.在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)点的极坐标为,为曲线上任意一点,为线段的中点,求动点的轨迹的直角坐标方程.解:(1)由,得,则,所以,所以直角坐标方程为;(2)点的极坐标为,,所以点的直角坐标为.设,则,得,因为在曲线上,所以,所以,即,所以动点的轨迹的直角坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论