共美联盟2025届高三二诊模拟考试数学试卷含解析_第1页
共美联盟2025届高三二诊模拟考试数学试卷含解析_第2页
共美联盟2025届高三二诊模拟考试数学试卷含解析_第3页
共美联盟2025届高三二诊模拟考试数学试卷含解析_第4页
共美联盟2025届高三二诊模拟考试数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

共美联盟2025届高三二诊模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某歌手大赛进行电视直播,比赛现场有名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照,,分组,绘成频率分布直方图如下:嘉宾评分嘉宾评分的平均数为,场内外的观众评分的平均数为,所有嘉宾与场内外的观众评分的平均数为,则下列选项正确的是()A. B. C. D.2.已知函数是上的偶函数,是的奇函数,且,则的值为()A. B. C. D.3.已知圆与抛物线的准线相切,则的值为()A.1 B.2 C. D.44.若不等式对于一切恒成立,则的最小值是()A.0 B. C. D.5.已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为()A. B. C.2 D.46.已知为虚数单位,复数满足,则复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知某口袋中有3个白球和个黑球(),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是.若,则=()A. B.1 C. D.28.已知数列的前n项和为,,且对于任意,满足,则()A. B. C. D.9.已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则()A.3 B. C. D.10.是平面上的一定点,是平面上不共线的三点,动点满足,,则动点的轨迹一定经过的()A.重心 B.垂心 C.外心 D.内心11.马林●梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p﹣1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P﹣1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是()A.3 B.4 C.5 D.612.已知斜率为的直线与双曲线交于两点,若为线段中点且(为坐标原点),则双曲线的离心率为()A. B.3 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的焦距为__________,渐近线方程为________.14.若的展开式中所有项的系数之和为,则______,含项的系数是______(用数字作答).15.某同学周末通过抛硬币的方式决定出去看电影还是在家学习,抛一枚硬币两次,若两次都是正面朝上,就在家学习,否则出去看电影,则该同学在家学习的概率为____________.16.已知,满足约束条件则的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)求函数在处的切线方程;(2)当时,证明:对任意恒成立.18.(12分)已知函数(其中是自然对数的底数)(1)若在R上单调递增,求正数a的取值范围;(2)若f(x)在处导数相等,证明:;(3)当时,证明:对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧).19.(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,,且.(1)求椭圆的标准方程;(2)设直线交椭圆于,两点,设直线与直线的斜率分别为,,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.20.(12分)如图,已知四棱锥的底面是等腰梯形,,,,,为等边三角形,且点P在底面上的射影为的中点G,点E在线段上,且.(1)求证:平面.(2)求二面角的余弦值.21.(12分)某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线①:有A,B两道独立运行的生产工序,且两道工序出现故障的概率依次是0.02,0.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若A,B两道工序都出现故障,则生产成本增加5万元.生产线②:有a,b两道独立运行的生产工序,且两道工序出现故障的概率依次是0.04,0.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,则生产成本增加5万元;若a,b两道工序都出现故障,则生产成本增加13万元.(1)若选择生产线①,求生产成本恰好为18万元的概率;(2)为最大限度节约生产成本,你会给工厂建议选择哪条生产线?请说明理由.22.(10分)在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心为(2,),半径为1的圆.(1)求曲线C1的普通方程和C2的直角坐标方程;(2)设M为曲线C1上的点,N为曲线C2上的点,求|MN|的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

计算出、,进而可得出结论.【详解】由表格中的数据可知,,由频率分布直方图可知,,则,由于场外有数万名观众,所以,.故选:B.【点睛】本题考查平均数的大小比较,涉及平均数公式以及频率分布直方图中平均数的计算,考查计算能力,属于基础题.2、B【解析】

根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【详解】为上的奇函数,,而函数是上的偶函数,,,故为周期函数,且周期为故选:B【点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.3、B【解析】

因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于半径,可知的值为2,选B.【详解】请在此输入详解!4、C【解析】

试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论.解:不等式x2+ax+1≥0对一切x∈(0,]成立,等价于a≥-x-对于一切成立,∵y=-x-在区间上是增函数∴∴a≥-∴a的最小值为-故答案为C.考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题5、A【解析】

由倾斜角的余弦值,求出正切值,即的关系,求出双曲线的离心率.【详解】解:设双曲线的半个焦距为,由题意又,则,,,所以离心率,故选:A.【点睛】本题考查双曲线的简单几何性质,属于基础题6、B【解析】

求出复数,得出其对应点的坐标,确定所在象限.【详解】由题意,对应点坐标为,在第二象限.故选:B.【点睛】本题考查复数的几何意义,考查复数的除法运算,属于基础题.7、B【解析】由题意或4,则,故选B.8、D【解析】

利用数列的递推关系式判断求解数列的通项公式,然后求解数列的和,判断选项的正误即可.【详解】当时,.所以数列从第2项起为等差数列,,所以,,.,,.故选:.【点睛】本题考查数列的递推关系式的应用、数列求和以及数列的通项公式的求法,考查转化思想以及计算能力,是中档题.9、C【解析】

根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案.【详解】显然直线过抛物线的焦点如图,过A,M作准线的垂直,垂足分别为C,D,过M作AC的垂线,垂足为E根据抛物线的定义可知MD=MF,AC=AF,又AM=MN,所以M为AN的中点,所以MD为三角形NAC的中位线,故MD=CE=EA=AC设MF=t,则MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故选:C【点睛】本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.10、B【解析】

解出,计算并化简可得出结论.【详解】λ(),∴,∴,即点P在BC边的高上,即点P的轨迹经过△ABC的垂心.故选B.【点睛】本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算是关键.11、C【解析】

模拟程序的运行即可求出答案.【详解】解:模拟程序的运行,可得:p=1,S=1,输出S的值为1,满足条件p≤7,执行循环体,p=3,S=7,输出S的值为7,满足条件p≤7,执行循环体,p=5,S=31,输出S的值为31,满足条件p≤7,执行循环体,p=7,S=127,输出S的值为127,满足条件p≤7,执行循环体,p=9,S=511,输出S的值为511,此时,不满足条件p≤7,退出循环,结束,故若执行如图所示的程序框图,则输出的梅森素数的个数是5,故选:C.【点睛】本题主要考查程序框图,属于基础题.12、B【解析】

设,代入双曲线方程相减可得到直线的斜率与中点坐标之间的关系,从而得到的等式,求出离心率.【详解】,设,则,两式相减得,∴,.故选:B.【点睛】本题考查求双曲线的离心率,解题方法是点差法,即出现双曲线的弦中点坐标时,可设弦两端点坐标代入双曲线方程相减后得出弦所在直线斜率与中点坐标之间的关系.二、填空题:本题共4小题,每小题5分,共20分。13、6【解析】由题得所以焦距,故第一个空填6.由题得渐近线方程为.故第二个空填.14、【解析】的展开式中所有项的系数之和为,,,项的系数是,故答案为(1),(2).15、【解析】

采用列举法计算古典概型的概率.【详解】抛掷一枚硬币两次共有4种情况,即(正,正),(正,反),(反,正),(反,反),在家学习只有1种情况,即(正,正),故该同学在家学习的概率为.故答案为:【点睛】本题考查古典概型的概率计算,考查学生的基本计算能力,是一道基础题.16、【解析】

画出可行域,通过平移基准直线到可行域边界位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知:可行域是由三点,,构成的三角形及其内部,当直线过点时,取得最小值.故答案为:【点睛】本小题主要考查利用线性规划求目标函数的最值,考查数形结合的数学思想方法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】

(1)因为,可得,即可求得答案;(2)要证对任意恒成立,即证对任意恒成立.设,,当时,,即可求得答案.【详解】(1),,,函数在处的切线方程为.(2)要证对任意恒成立.即证对任意恒成立.设,,当时,,,令,解得,当时,,函数在上单调递减;当时,,函数在上单调递增.,,,当时,对任意恒成立,即当时,对任意恒成立.【点睛】本题主要考查了求曲线的切线方程和求证不等式恒成立问题,解题关键是掌握由导数求切线方程的解法和根据导数求证不等式恒成立的方法,考查了分析能力和计算能力,属于难题.18、(1);(2)见解析;(3)见解析【解析】

(1)需满足恒成立,只需即可;(2)根据的单调性,构造新函数,并令,根据的单调性即可得证;(3)将问题转化为证明有唯一实数解,对求导,判断其单调性,结合题目条件与不等式的放缩,即可得证.【详解】;令,则恒成立;,;的取值范围是;(2)证明:由(1)知,在上单调递减,在上单调递增;;令,;则;令,则;;;(3)证明:,,要证明有唯一实数解;当时,;当时,;即对于任意实数,一定有解;;当时,有两个极值点;函数在,,上单调递增,在上单调递减;又;只需,在时恒成立;只需;令,其中一个正解是;,;单调递增,,(1);;;综上得证.【点睛】本题考查了利用导数研究函数的单调性,考查了利用导数证明不等式,考查了转化思想、不等式的放缩,属难题.19、(1)(2)直线过定点,该定点的坐标为.【解析】

(1)因为椭圆过点,所以①,设为坐标原点,因为,所以,又,所以②,将①②联立解得(负值舍去),所以椭圆的标准方程为.(2)由(1)可知,设,.将代入,消去可得,则,,,所以,所以,此时,所以,此时直线的方程为,即,令,可得,所以直线过定点,该定点的坐标为.20、(1)证明见解析(2)【解析】

(1)由等腰梯形的性质可证得,由射影可得平面,进而求证;(2)取的中点F,连接,以G为原点,所在直线为x轴,所在直线为y轴,所在直线为z轴,建立空间直角坐标系,分别求得平面与平面的法向量,再利用数量积求解即可.【详解】(1)在等腰梯形中,点E在线段上,且,点E为上靠近C点的四等分点,,,,,点P在底面上的射影为的中点G,连接,平面,平面,.又,平面,平面,平面.(2)取的中点F,连接,以G为原点,所在直线为x轴,所在直线为y轴,所在直线为z轴,建立空间直角坐标系,如图所示,由(1)易知,,,又,,,为等边三角形,,则,,,,,,,,,设平面的法向量为,则,即,令,则,,,设平面的法向量为,则,即,令,则,,,设平面与平面的夹角为θ,则二面角的余弦值为.【点睛】本题考查线面垂直的证明,考查空间向量法求二面角,考查运算能力与空间想象能力.21、(1)0.0294.(2)应选生产线②.见解析【解析】

(1)由题意转化条件得A工序不出现故障B工序出现故障,利用相互独立事件的概率公式即可得解;(2)分别算出两个生产线增加的生产成本的期望,进而求出两个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论