辽宁省大连市第十六中学2025届高考压轴卷数学试卷含解析_第1页
辽宁省大连市第十六中学2025届高考压轴卷数学试卷含解析_第2页
辽宁省大连市第十六中学2025届高考压轴卷数学试卷含解析_第3页
辽宁省大连市第十六中学2025届高考压轴卷数学试卷含解析_第4页
辽宁省大连市第十六中学2025届高考压轴卷数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省大连市第十六中学2025届高考压轴卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若,则下列不等关系正确的是()A. B.C. D.2.设,,则的值为()A. B.C. D.3.已知函数,其中表示不超过的最大正整数,则下列结论正确的是()A.的值域是 B.是奇函数C.是周期函数 D.是增函数4.已知变量的几组取值如下表:12347若与线性相关,且,则实数()A. B. C. D.5.已知是两条不重合的直线,是两个不重合的平面,下列命题正确的是()A.若,,,,则B.若,,,则C.若,,,则D.若,,,则6.若集合,,则()A. B. C. D.7.已知双曲线(,)的左、右顶点分别为,,虚轴的两个端点分别为,,若四边形的内切圆面积为,则双曲线焦距的最小值为()A.8 B.16 C. D.8.设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是()A. B. C. D.9.函数f(x)=sin(wx+)(w>0,<)的最小正周期是π,若将该函数的图象向右平移个单位后得到的函数图象关于直线x=对称,则函数f(x)的解析式为()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)10.已知等差数列的前项和为,若,则等差数列公差()A.2 B. C.3 D.411.设是虚数单位,复数()A. B. C. D.12.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:①曲线有四条对称轴;②曲线上的点到原点的最大距离为;③曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;④四叶草面积小于.其中,所有正确结论的序号是()A.①② B.①③ C.①③④ D.①②④二、填空题:本题共4小题,每小题5分,共20分。13.已知集合A=,B=,若AB中有且只有一个元素,则实数a的值为_______.14.已知内角的对边分别为外接圆的面积为,则的面积为_________.15.某市公租房源位于、、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,则该市的任意位申请人中,恰好有人申请小区房源的概率是______.(用数字作答)16.连续掷两次骰子,分别得到的点数作为点的坐标,则点落在圆内的概率为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知都是大于零的实数.(1)证明;(2)若,证明.18.(12分)是数列的前项和,且.(1)求数列的通项公式;(2)若,求数列中最小的项.19.(12分)在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.女生男生总计获奖不获奖总计附表及公式:其中,.20.(12分)已知函数.(1)若对任意x0,f(x)0恒成立,求实数a的取值范围;(2)若函数f(x)有两个不同的零点x1,x2(x1x2),证明:.21.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程及曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.22.(10分)某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:(1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);(2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望;(3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率.现对生产线上生产的零件进行成箱包装出售,每箱个.企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为元.若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用.现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

利用函数的单调性得到的大小关系,再利用不等式的性质,即可得答案.【详解】∵在R上单调递增,且,∴.∵的符号无法判断,故与,与的大小不确定,对A,当时,,故A错误;对C,当时,,故C错误;对D,当时,,故D错误;对B,对,则,故B正确.故选:B.【点睛】本题考查分段函数的单调性、不等式性质的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.2、D【解析】

利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.【详解】,,,,,,,,故选:D.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.3、C【解析】

根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.【详解】由表示不超过的最大正整数,其函数图象为选项A,函数,故错误;选项B,函数为非奇非偶函数,故错误;选项C,函数是以1为周期的周期函数,故正确;选项D,函数在区间上是增函数,但在整个定义域范围上不具备单调性,故错误.故选:C【点睛】本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.4、B【解析】

求出,把坐标代入方程可求得.【详解】据题意,得,所以,所以.故选:B.【点睛】本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数值.5、B【解析】

根据空间中线线、线面位置关系,逐项判断即可得出结果.【详解】A选项,若,,,,则或与相交;故A错;B选项,若,,则,又,是两个不重合的平面,则,故B正确;C选项,若,,则或或与相交,又,是两个不重合的平面,则或与相交;故C错;D选项,若,,则或或与相交,又,是两个不重合的平面,则或与相交;故D错;故选B【点睛】本题主要考查与线面、线线相关的命题,熟记线线、线面位置关系,即可求解,属于常考题型.6、A【解析】

用转化的思想求出中不等式的解集,再利用并集的定义求解即可.【详解】解:由集合,解得,则故选:.【点睛】本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键.属于基础题.7、D【解析】

根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.【详解】根据题意,画出几何关系如下图所示:设四边形的内切圆半径为,双曲线半焦距为,则所以,四边形的内切圆面积为,则,解得,则,即故由基本不等式可得,即,当且仅当时等号成立.故焦距的最小值为.故选:D【点睛】本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.8、A【解析】

依题意可得即可得到,从而求出双曲线的离心率的取值范围;【详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【点睛】本题考查双曲线的简单几何性质,属于中档题.9、D【解析】

由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.【详解】分析:由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.详解:因为函数的最小正周期是,所以,解得,所以,将该函数的图像向右平移个单位后,得到图像所对应的函数解析式为,由此函数图像关于直线对称,得:,即,取,得,满足,所以函数的解析式为,故选D.【点睛】本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力.10、C【解析】

根据等差数列的求和公式即可得出.【详解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故选C.【点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题.11、D【解析】

利用复数的除法运算,化简复数,即可求解,得到答案.【详解】由题意,复数,故选D.【点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题.12、C【解析】

①利用之间的代换判断出对称轴的条数;②利用基本不等式求解出到原点的距离最大值;③将面积转化为的关系式,然后根据基本不等式求解出最大值;④根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于.【详解】①:当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;综上可知:有四条对称轴,故正确;②:因为,所以,所以,所以,取等号时,所以最大距离为,故错误;③:设任意一点,所以围成的矩形面积为,因为,所以,所以,取等号时,所以围成矩形面积的最大值为,故正确;④:由②可知,所以四叶草包含在圆的内部,因为圆的面积为:,所以四叶草的面积小于,故正确.故选:C.【点睛】本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】

利用AB中有且只有一个元素,可得,可求实数a的值.【详解】由题意AB中有且只有一个元素,所以,即.故答案为:.【点睛】本题主要考查集合的交集运算,集合交集的运算本质是存同去异,侧重考查数学运算的核心素养.14、【解析】

由外接圆面积,求出外接圆半径,然后由正弦定理可求得三角形的内角,从而有,于是可得三角形边长,可得面积.【详解】设外接圆半径为,则,由正弦定理,得,∴,,.故答案为:.【点睛】本题考查正弦定理,利用正弦定理求出三角形的内角,然后可得边长,从而得面积,掌握正弦定理是解题关键.15、【解析】

基本事件总数,恰好有2人申请小区房源包含的基本事件个数,由此能求出该市的任意5位申请人中,恰好有2人申请小区房源的概率.【详解】解:某市公租房源位于、、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,该市的任意5位申请人中,基本事件总数,该市的任意5位申请人中,恰好有2人申请小区房源包含的基本事件个数:,该市的任意5位申请人中,恰好有2人申请小区房源的概率是.故答案为:.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,属于中档题.16、【解析】

连续掷两次骰子共有种结果,列出满足条件的结果有11种,利用古典概型即得解【详解】由题意知,连续掷两次骰子共有种结果,而满足条件的结果为:共有11种结果,根据古典概型概率公式,可得所求概率.故答案为:【点睛】本题考查了古典概型的应用,考查了学生综合分析,数学运算的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析.(2)答案见解析【解析】

(1)利用基本不等式可得,两式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【详解】(1)两式相加得(2)由(1)知于是,.【点睛】本题考查了基本不等式的应用,属于基础题.18、(1);(2).【解析】

(1)由可得出,两式作差可求得数列的通项公式;(2)求得,利用数列的单调性的定义判断数列的单调性,由此可求得数列的最小项的值.【详解】(1)对任意的,由得,两式相减得,因此,数列的通项公式为;(2)由(1)得,则.当时,,即,;当时,,即,.所以,数列的最小项为.【点睛】本题考查利用与的关系求通项,同时也考查了利用数列的单调性求数列中的最小项,考查推理能力与计算能力,属于中等题.19、(Ⅰ),;(Ⅱ)详见解析.【解析】

(Ⅰ)根据概率的性质知所有矩形的面积之和等于列式可解得;(Ⅱ)由频率分布直方图知样本中获奖的人数为,不获奖的人数为,从而可得列联表,再计算出,与临界值比较可得.【详解】解:(Ⅰ),.(Ⅱ)由频率分布直方图知样本中获奖的人数为,不获奖的人数为,列联表如下:女生男生总计获奖不获奖总计因为,所以在犯错误的概率不超过的前提下能认为“获奖与女生,男生有关.”【点睛】本题主要考查独立性检验,以及由频率分布直方图求平均数的问题,熟记独立性检验的思想,以及平均数的计算方法即可,属于常考题型.20、(1);(2)证明见解析.【解析】

(1)求出,判断函数的单调性,求出函数的最大值,即求的范围;(2)由(1)可知,.对分和两种情况讨论,构造函数,利用放缩法和基本不等式证明结论.【详解】(1)由,得.令.当时,;当时,;在上单调递增,在上单调递减,.对任意恒成立,.(2)证明:由(1)可知,在上单调递增,在上单调递减,.若,则,令在上单调递增,,.又,在上单调递减,.若,则显然成立.综上,.又以上两式左右两端分别相加,得,即,所以.【点睛】本题考查利用导数解决不等式恒成立问题,利用导数证明不等式,属于难题.21、(1);(2)【解析】

(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用(1)的结论,进一步利用一元二次方程根和系数的关系式的应用求出结果.【详解】解:(1)直线的参数方程为(为参

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论