江苏省镇江市淮州中学2025届高三适应性调研考试数学试题含解析_第1页
江苏省镇江市淮州中学2025届高三适应性调研考试数学试题含解析_第2页
江苏省镇江市淮州中学2025届高三适应性调研考试数学试题含解析_第3页
江苏省镇江市淮州中学2025届高三适应性调研考试数学试题含解析_第4页
江苏省镇江市淮州中学2025届高三适应性调研考试数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省镇江市淮州中学2025届高三适应性调研考试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为()A. B. C. D.2.已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是()A. B. C. D.3.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;其中真命题的个数为()A.3 B.2 C.1 D.04.已知四棱锥中,平面,底面是边长为2的正方形,,为的中点,则异面直线与所成角的余弦值为()A. B. C. D.5.已知复数,满足,则()A.1 B. C. D.56.已知直线和平面,若,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.不充分不必要7.已知实数,满足约束条件,则目标函数的最小值为A. B.C. D.8.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为()A. B. C. D.9.将函数f(x)=sin3x-cos3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:①它的图象关于直线x=对称;②它的最小正周期为;③它的图象关于点(,1)对称;④它在[]上单调递增.其中所有正确结论的编号是()A.①② B.②③ C.①②④ D.②③④10.在中,,,,点,分别在线段,上,且,,则().A. B. C.4 D.911.设,则(

)A.10 B.11 C.12 D.1312.已知角的终边经过点P(),则sin()=A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若方程有两个不等实根,则实数的取值范围是_____________.14.在平面直角坐标系xOy中,己知直线与函数的图象在y轴右侧的公共点从左到右依次为,,…,若点的横坐标为1,则点的横坐标为________.15.若函数,其中且,则______________.16.已知,为正实数,且,则的最小值为________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知抛物线:与圆:()相交于,,,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.18.(12分)在锐角中,分别是角的对边,,,且.(1)求角的大小;(2)求函数的值域.19.(12分)已知(1)若,且函数在区间上单调递增,求实数a的范围;(2)若函数有两个极值点,且存在满足,令函数,试判断零点的个数并证明.20.(12分)已知各项均为正数的数列的前项和为,且,(,且)(1)求数列的通项公式;(2)证明:当时,21.(12分)已知函数有两个零点.(1)求的取值范围;(2)是否存在实数,对于符合题意的任意,当时均有?若存在,求出所有的值;若不存在,请说明理由.22.(10分)设点,分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为1.(1)求椭圆的方程;(2)如图,动直线与椭圆有且仅有一个公共点,点,是直线上的两点,且,,求四边形面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

分类讨论,仅有一个阳爻的有坎、艮、震三卦,从中取两卦;从仅有两个阳爻的有巽、离、兑三卦中取一个,再取没有阳爻的坤卦,计算满足条件的种数,利用古典概型即得解.【详解】由图可知,仅有一个阳爻的有坎、艮、震三卦,从中取两卦满足条件,其种数是;仅有两个阳爻的有巽、离、兑三卦,没有阳爻的是坤卦,此时取两卦满足条件的种数是,于是所求的概率.故选:C【点睛】本题考查了古典概型的应用,考查了学生综合分析,分类讨论,数学运算的能力,属于基础题.2、A【解析】

建立平面直角坐标系,求出直线,设出点,通过,找出与的关系.通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值域,即为的取值范围.【详解】以D为原点,BC所在直线为轴,AD所在直线为轴建系,设,则直线,设点,所以由得,即,所以,由及,解得,由二次函数的图像知,,所以的取值范围是.故选A.【点睛】本题主要考查解析法在向量中的应用,以及转化与化归思想的运用.3、C【解析】

根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据独立性检验的方法和步骤,可判断③.【详解】①根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;③对分类变量与的随机变量的观测值来说,越小,“与有关系”的把握程度越小,故③为假命题.故选:.【点睛】本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题.4、B【解析】

由题意建立空间直角坐标系,表示出各点坐标后,利用即可得解.【详解】平面,底面是边长为2的正方形,如图建立空间直角坐标系,由题意:,,,,,为的中点,.,,,异面直线与所成角的余弦值为即为.故选:B.【点睛】本题考查了空间向量的应用,考查了空间想象能力,属于基础题.5、A【解析】

首先根据复数代数形式的除法运算求出,求出的模即可.【详解】解:,,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题.6、B【解析】

由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【详解】,不能确定还是,,当时,存在,,由又可得,所以“”是“”的必要不充分条件,故选:B【点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.7、B【解析】

作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值.【详解】解:作出不等式组对应的平面区域如图:目标函数的几何意义为动点到定点的斜率,当位于时,此时的斜率最小,此时.故选B.【点睛】本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键.8、B【解析】

根据三角函数定义得到,故,再利用和差公式得到答案.【详解】∵角的终边过点,∴,.∴.故选:.【点睛】本题考查了三角函数定义,和差公式,意在考查学生的计算能力.9、B【解析】

根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.【详解】因为f(x)=sin3x-cos3x+1=2sin(3x-)+1,由图象的平移变换公式知,函数g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期为,故②正确;令3x+=kπ+,得x=+(k∈Z),所以x=不是对称轴,故①错误;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故③正确;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④错误;故选:B【点睛】本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型10、B【解析】

根据题意,分析可得,由余弦定理求得的值,由可得结果.【详解】根据题意,,则在中,又,则则则则故选:B【点睛】此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.11、B【解析】

根据题中给出的分段函数,只要将问题转化为求x≥10内的函数值,代入即可求出其值.【详解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故选:B.【点睛】本题主要考查了分段函数中求函数的值,属于基础题.12、A【解析】

由题意可得三角函数的定义可知:,,则:本题选择A选项.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由知x>0,故.令,则.当时,;当时,.所以在(0,e)上递增,在(e,+)上递减.故,即.14、1【解析】

当时,得,或,依题意可得,可求得,继而可得答案.【详解】因为点的横坐标为1,即当时,,所以或,又直线与函数的图象在轴右侧的公共点从左到右依次为,,所以,故,所以函数的关系式为.当时,(1),即点的横坐标为1,为二函数的图象的第二个公共点.故答案为:1.【点睛】本题考查三角函数关系式的恒等变换、正弦型函数的性质的应用,主要考查学生的运算能力及思维能力,属于中档题.15、【解析】

先化简函数的解析式,在求出,从而求得的值.【详解】由题意,函数可化简为,所以,所以.故答案为:0.【点睛】本题主要考查了二项式定理的应用,以及导数的运算和函数值的求解,其中解答中正确化简函数的解析式,准确求解导数是解答的关键,着重考查了推理与运算能力.16、【解析】

由,为正实数,且,可知,于是,可得,再利用基本不等式即可得出结果.【详解】解:,为正实数,且,可知,,.当且仅当时取等号.的最小值为.故答案为:.【点睛】本题考查了基本不等式的性质应用,恰当变形是解题的关键,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)点的坐标为【解析】

将抛物线方程与圆方程联立,消去得到关于的一元二次方程,抛物线与圆有四个交点需满足关于的一元二次方程在上有两个不等的实数根,根据二次函数的有关性质即可得到关于的不等式组,解不等式即可.不妨设抛物线与圆的四个交点坐标为,,,,据此可表示出直线、的方程,联立方程即可表示出点坐标,再根据等腰梯形的面积公式可得四边形的面积的表达式,令,由及知,对关于的面积函数进行求导,判断其单调性和最值,即可求出四边形的面积取得最大值时的值,进而求出点坐标.【详解】(1)联立抛物线与圆的方程消去,得.由题意可知在上有两个不等的实数根.所以解得,所以的取值范围为.(2)根据(1)可设方程的两个根分别为,(),则,,,,且,,所以直线、的方程分别为,,联立方程可得,点的坐标为,因为四边形为等腰梯形,所以,令,则,所以,因为,所以当时,;当时,,所以函数在上单调递增,在上单调递减,即当时,四边形的面积取得最大值,因为,点的坐标为,所以当四边形的面积取得最大值时,点的坐标为.【点睛】本题考查利用导数求函数的极值与最值、抛物线及其标准方程及直线与圆锥曲线相关的最值问题;考查运算求解能力、转化与化归能力和知识的综合运用能力;利用函数的思想求圆锥曲线中面积的最值是求解本题的关键;属于综合型强、难度大型试题.18、(1);(2)【解析】

(1)由向量平行的坐标表示、正弦定理边化角和两角和差正弦公式可化简求得,进而得到;(2)利用两角和差余弦公式、二倍角和辅助角公式化简函数为,根据的范围可确定的范围,结合正弦函数图象可确定所求函数的值域.【详解】(1),,由正弦定理得:,即,,,,又,.(2)在锐角中,,..,,,,函数的值域为.【点睛】本题考查三角恒等变换、解三角形和三角函数性质的综合应用问题;涉及到共线向量的坐标表示、利用三角恒等变换公式化简求值、正弦定理边化角的应用、正弦型函数值域的求解等知识.19、(1)(2)函数有两个零点和【解析】试题分析:(1)求导后根据函数在区间单调递增,导函数大于或等于0(2)先判断为一个零点,然后再求导,根据,化简求得另一个零点。解析:(1)当时,,因为函数在上单调递增,所以当时,恒成立.[来源:Z&X&X&K]函数的对称轴为.①,即时,,即,解之得,解集为空集;②,即时,即,解之得,所以③,即时,即,解之得,所以综上所述,当函数在区间上单调递增.(2)∵有两个极值点,∴是方程的两个根,且函数在区间和上单调递增,在上单调递减.∵∴函数也是在区间和上单调递增,在上单调递减∵,∴是函数的一个零点.由题意知:∵,∴,∴∴,∴又=∵是方程的两个根,∴,,∴∵函数图像连续,且在区间上单调递增,在上单调递减,在上单调递增∴当时,,当时,当时,∴函数有两个零点和.20、(1)(2)见证明【解析】

(1)由题意将递推关系式整理为关于与的关系式,求得前n项和然后确定通项公式即可;(2)由题意结合通项公式的特征放缩之后裂项求和即可证得题中的不等式.【详解】(1)由,得,即,所以数列是以为首项,以为公差的等差数列,所以,即,当时,,当时,,也满足上式,所以;(2)当时,,所以【点睛】给出与的递推关系,求an,常用思路是:一是利用转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.21、(1);(2).【解析】

(1)对求导,对参数进行分类讨论,根据函数单调性即可求得.(2)先根据,得,再根据零点解得,转化不等式得,令,化简得,因此,,最后根据导数研究对应函数单调性,确定对应函数最值,即得取值集合.【详解】(1),当时,对恒成立,与题意不符,当,,∴时,即函数在单调递增,在单调递减,∵和时均有,∴,解得:,综上可知:的取值范围;(2)由(1)可知,则,由的任意性及知,,且,∴,故,又∵,令,则,且恒成立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论