![2025届山东省锦泽技工学校高三第四次模拟考试数学试卷含解析_第1页](http://file4.renrendoc.com/view9/M03/22/0C/wKhkGWdounaAcvrsAAITmNfU9x0848.jpg)
![2025届山东省锦泽技工学校高三第四次模拟考试数学试卷含解析_第2页](http://file4.renrendoc.com/view9/M03/22/0C/wKhkGWdounaAcvrsAAITmNfU9x08482.jpg)
![2025届山东省锦泽技工学校高三第四次模拟考试数学试卷含解析_第3页](http://file4.renrendoc.com/view9/M03/22/0C/wKhkGWdounaAcvrsAAITmNfU9x08483.jpg)
![2025届山东省锦泽技工学校高三第四次模拟考试数学试卷含解析_第4页](http://file4.renrendoc.com/view9/M03/22/0C/wKhkGWdounaAcvrsAAITmNfU9x08484.jpg)
![2025届山东省锦泽技工学校高三第四次模拟考试数学试卷含解析_第5页](http://file4.renrendoc.com/view9/M03/22/0C/wKhkGWdounaAcvrsAAITmNfU9x08485.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省锦泽技工学校高三第四次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示是某年第一季度五省GDP情况图,则下列说法中不正确的是()A.该年第一季度GDP增速由高到低排位第3的是山东省B.与去年同期相比,该年第一季度的GDP总量实现了增长C.该年第一季度GDP总量和增速由高到低排位均居同一位的省份有2个D.去年同期浙江省的GDP总量超过了4500亿元2.若数列满足且,则使的的值为()A. B. C. D.3.等腰直角三角形BCD与等边三角形ABD中,,,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为()A. B. C. D.4.已知等差数列的前项和为,且,则()A.45 B.42 C.25 D.365.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]6.已知实数满足则的最大值为()A.2 B. C.1 D.07.已知命题,;命题若,则,下列命题为真命题的是()A. B. C. D.8.已知集合A,B=,则A∩B=A. B. C. D.9.若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是()A.E B.F C.G D.H10.由实数组成的等比数列{an}的前n项和为Sn,则“a1>0”是“S9>S8”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.12.集合的真子集的个数为()A.7 B.8 C.31 D.32二、填空题:本题共4小题,每小题5分,共20分。13.已知过点的直线与函数的图象交于、两点,点在线段上,过作轴的平行线交函数的图象于点,当∥轴,点的横坐标是14.定义在上的奇函数满足,并且当时,则___15.“北斗三号”卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点、远地点离地面的距离大约分别是,,则“北斗三号”卫星运行轨道的离心率为__________.16.执行以下语句后,打印纸上打印出的结果应是:_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受.如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30cm,宽26cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为xcm和ycm,窗芯所需条形木料的长度之和为L.(1)试用x,y表示L;(2)如果要求六根支条的长度均不小于2cm,每个菱形的面积为130cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?18.(12分)已知数列是等差数列,前项和为,且,.(1)求.(2)设,求数列的前项和.19.(12分)已知函数f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)对任意,都有恒成立,求实数a的取值范围;(3)证明:对一切,都有成立.20.(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:.21.(12分)如图,在三棱锥中,平面平面,,.点,,分别为线段,,的中点,点是线段的中点.(1)求证:平面.(2)判断与平面的位置关系,并证明.22.(10分)椭圆的右焦点,过点且与轴垂直的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)过点且斜率不为0的直线与椭圆交于,两点.为坐标原点,为椭圆的右顶点,求四边形面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据折线图、柱形图的性质,对选项逐一判断即可.【详解】由折线图可知A、B项均正确,该年第一季度总量和增速由高到低排位均居同一位的省份有江苏均第一.河南均第四.共2个.故C项正确;.故D项不正确.故选:D.【点睛】本题考查折线图、柱形图的识别,考查学生的阅读能力、数据处理能力,属于中档题.2、C【解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C.3、A【解析】
设E为BD中点,连接AE、CE,过A作于点O,连接DO,得到即为直线AD与平面BCD所成角的平面角,根据题中条件求得相应的量,分析得到即为直线AC与平面ABD所成角,进而求得其正弦值,得到结果.【详解】设E为BD中点,连接AE、CE,由题可知,,所以平面,过A作于点O,连接DO,则平面,所以即为直线AD与平面BCD所成角的平面角,所以,可得,在中可得,又,即点O与点C重合,此时有平面,过C作与点F,又,所以,所以平面,从而角即为直线AC与平面ABD所成角,,故选:A.【点睛】该题考查的是有关平面图形翻折问题,涉及到的知识点有线面角的正弦值的求解,在解题的过程中,注意空间角的平面角的定义,属于中档题目.4、D【解析】
由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【详解】由题,.故选:D【点睛】本题考查等差数列的性质,考查等差数列的前项和.5、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.6、B【解析】
作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【点睛】考查线性规划,是基础题.7、B【解析】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选B.8、A【解析】
先解A、B集合,再取交集。【详解】,所以B集合与A集合的交集为,故选A【点睛】一般地,把不等式组放在数轴中得出解集。9、C【解析】
由于在复平面内点的坐标为,所以,然后将代入化简后可找到其对应的点.【详解】由,所以,对应点.故选:C【点睛】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.10、C【解析】
根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【详解】解:若{an}是等比数列,则,
若,则,即成立,
若成立,则,即,
故“”是“”的充要条件,
故选:C.【点睛】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键.11、D【解析】
结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.12、A【解析】
计算,再计算真子集个数得到答案.【详解】,故真子集个数为:.故选:.【点睛】本题考查了集合的真子集个数,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
通过设出A点坐标,可得C点坐标,通过∥轴,可得B点坐标,于是再利用可得答案.【详解】根据题意,可设点,则,由于∥轴,故,代入,可得,即,由于在线段上,故,即,解得.14、【解析】
根据所给表达式,结合奇函数性质,即可确定函数对称轴及周期性,进而由的解析式求得的值.【详解】满足,由函数对称性可知关于对称,且令,代入可得,由奇函数性质可知,所以令,代入可得,所以是以4为周期的周期函数,则当时,所以,所以,故答案为:.【点睛】本题考查了函数奇偶性与对称性的综合应用,周期函数的判断及应用,属于中档题.15、【解析】
画出图形,结合椭圆的定义和题设条件,求得的值,即可求得椭圆的离心率,得到答案.【详解】如图所示,设椭圆的长半轴为,半焦距为,因为地球半径为R,若其近地点、远地点离地面的距离大约分别是,,可得,解得,所以椭圆的离心率为.故答案为:.【点睛】本题主要考查了椭圆的离心率的求解,其中解答中熟记椭圆的几何性质,列出方程组,求得的值是解答的关键,着重考查了推理与计算能力,属于基础题.16、1【解析】
根据程序框图直接计算得到答案.【详解】程序在运行过程中各变量的取值如下所示:是否继续循环ix循环前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循环,所以打印纸上打印出的结果应是:1故答案为:1.【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】试题分析:(1)由条件可先求水平方向每根支条长,竖直方向每根支条长为,因此所需木料的长度之和L=(2)先确定范围由可得,再由面积为130cm2,得,转化为一元函数,令,则在上为增函数,解得L有最小值.试题解析:(1)由题意,水平方向每根支条长为cm,竖直方向每根支条长为cm,菱形的边长为cm.从而,所需木料的长度之和L=cm.(2)由题意,,即,又由可得.所以.令,其导函数在上恒成立,故在上单调递减,所以可得.则=.因为函数和在上均为增函数,所以在上为增函数,故当,即时L有最小值.答:做这样一个窗芯至少需要cm长的条形木料.考点:函数应用题18、(1)(2)【解析】
(1)由数列是等差数列,所以,解得,又由,解得,即可求得数列的通项公式;(2)由(1)得,利用乘公比错位相减,即可求解数列的前n项和.【详解】(1)由题意,数列是等差数列,所以,又,,由,得,所以,解得,所以数列的通项公式为.(2)由(1)得,,,两式相减得,,即.【点睛】本题主要考查等差的通项公式、以及“错位相减法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.19、(1)(2)((3)见证明【解析】
(1)先求函数导数,再求导函数零点,列表分析导函数符号变化规律确定函数单调性,最后根据函数单调性确定最小值取法;(2)先分离不等式,转化为对应函数最值问题,利用导数求对应函数最值即得结果;(3)构造两个函数,再利用两函数最值关系进行证明.【详解】(1)当时,单调递减,当时,单调递增,所以函数f(x)的最小值为f()=;(2)因为所以问题等价于在上恒成立,记则,因为,令函数f(x)在(0,1)上单调递减;函数f(x)在(1,+)上单调递增;即,即实数a的取值范围为(.(3)问题等价于证明由(1)知道,令函数在(0,1)上单调递增;函数在(1,+)上单调递减;所以{,因此,因为两个等号不能同时取得,所以即对一切,都有成立.【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.20、(1)(2)证明见解析【解析】
(1)将表示为分段函数的形式,由此求得不等式的解集.(2)利用绝对值三角不等式求得的最小值,利用分析法,结合基本不等式,证得不等式成立.【详解】(1),不等式,即或或,即有或或,所以所求不等式的解集为.(2),,因为,,所以要证,只需证,即证,因为,所以只要证,即证,即证,因为,所以只需证,因为,所以成立,所以.【点睛】本小题主要考查绝对值不等式的解法,考查分析法证明不等式,考查基本不等式的运用,属于中档题.21、(1)见解析(2)平面.见解析【解析】
(1)要证平面,只需证明,,即可求得答案;(2)连接交于点,连接,根据已知条件求证,即可判断与平面的位置关系,进而求得答案.【详解】(1),为边的中点,,平面平面,平面平面,平面,平面,,在内,,为所在边的中点,,又,,平面.(2)判断可知,平面,证明如下:连接交于点,连接.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度广告内容制作与广告主定制合同
- 2025年度智慧社区建设项目贷款合同
- 2025年度商用空调设备节能改造项目合同
- 2025年度婚恋公司婚姻家庭心理咨询合同
- 2025年度建筑工程施工监理合同书
- 2025年度国际教育项目合作办学合同
- 2025年度公共设施设备维修合同范本二
- 2025年度城市综合体开发建设项目合同示范文本
- 2025年度健康医疗信息化技术服务合同范本(正规范本)
- 2025年度医疗机构健康宣传海报定制服务合同
- 充电桩知识培训课件
- 2025年七年级下册道德与法治主要知识点
- 2025年交通运输部长江口航道管理局招聘4人历年高频重点提升(共500题)附带答案详解
- 老年髋部骨折患者围术期下肢深静脉血栓基础预防专家共识(2024版)解读
- 广东省广州市2025届高三上学期12月调研测试(零模)英语 含解析
- 偏瘫足内翻的治疗
- 兰溪市排水防涝提升雨污管网修复改造初步设计文本
- 2024-2030年中国永磁电机市场现状分析及前景趋势预测报告
- 药企质量主管竞聘
- 信息对抗与认知战研究-洞察分析
- 2024-2025学年人教版八年级上册地理期末测试卷(一)(含答案)
评论
0/150
提交评论