版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重难点29圆锥曲线中的三角形(四边形)面积问题【六大题型】
【新高考专用】
►题型归纳
【题型1三角形面积问题】.....................................................................2
【题型2四边形面积问题】.....................................................................2
【题型3三角形面积之比问题】.................................................................4
【题型4三角形面积之和、之差问题】..........................................................5
【题型5已知面积求其他量】...................................................................7
【题型6三角形(四边形)面积的最值、范围问题】..............................................8
►命题规律
1、圆锥曲线中的三角形(四边形)面积问题
圆锥曲线是高考的重点、热点内容,从近几年的高考情况来看,圆锥曲线中的三角形(四边形)面积
问题考查热度较高,考查形式多种多样,主要考查三角形、四边形的面积及其最值(范围)问题、面积之
比问题、已知面积求其他量等问题,各种题型都有考查,在解答题中,计算量大,难度较高;复习时要加
强此类问题的训练,灵活求解.
►方法技巧总结
【知识点1圆锥曲线中的面积问题及其解题策略】
1.三角形面积问题的解题策略
(1)利用三角形面积公式求解:
①底=1••底X高(一般选弦长做底,点到直线的距离为高);
②品=J-水平宽X铅垂高.
2.四边形面积问题的解题策略
面积的拆分:不规则的多边形的面积问题通常考虑拆分为多个三角形的面积和,对于三角形如果底和
高不便于计算,则也可以考虑拆分成若干个易于计算的三角形.
3.三角形面积之比问题的解题策略
(1)三角形面积公式:利用三角形面积公式分别求出各个三角形的面积,再研究它们之间的比值问题.
(2)面积的关系的转化:寻找这些三角形的底和高中是否存在“同底”或“等高”的特点,从而可将面
积的关系转化为线段的关系,使得计算得以简化.
4.圆锥曲线中面积的最值(范围)问题的解题策略
一般都是利用三角形面积公式表示面积,然后将面积的关系式转化为某个变量的一个函数,再求解函
数的最值(常用方法有:单调性法、换元法、基本不等式、三角函数求最值、利用导数求最值等),在计算面
积的过程中,优先选择长度为定值的线段参与运算,灵活求解,简化计算.
►举一反三
【题型1三角形面积问题】
【例1】(2024•湖北武汉•二模)已知抛物线C:y2=2px(p>0)的焦点为F,过尸作直线交抛物线C于48两
点,过4B分别作准线[的垂线,垂足分别为M,N,若△力FM和4BF'的面积分别为8和4,则aAlFN的面
积为()
A.32B.16C.8V2D.8
2
【变式1-1](2024•湖南长沙•三模)已知点/为双曲线?-y=1的左顶点,点2和点c在双曲线的左支
匕若△力BC是等腰直角三角形,则△力BC的面积是()
A.4B.-C.-D.-
999
【变式1-2](2024•陕西商洛•模拟预测)已知椭圆。5+,=1(口>8>0)的长轴长为2(),离心率为5,左
、右焦点为尸1,尸2,若。上的点P满足NF1PF2=泉则的面积是()
64V3n64"128V3-128
AA.-----B.——C.-------D.—
3333
【变式1-3](2024•全国•模拟预测)已知点4为椭圆M:9+[=1的一点,Fi,分别为椭圆M的左,右
焦点,NF遇尸2的平分线交y轴于点B(O,—J,则的面积为()
A.-B.—C.1D.2
22
【题型2四边形面积问题】
【例2】(2024•贵州毕节•二模)在椭圆C:9+[=1上任取一点P,过点P作x轴的垂线段PD,。为垂足,
点M在线段PD上,且满足|DP|=&|DM|.
(1)当点P在椭圆C上运动时,求点M的轨迹E的方程;
(2)若曲线E与久,y轴的正半轴分别交于点4B,点N是E上第三象限内一点,线段2N与y轴交于点口,线段BN
与x轴交于点G,求四边形ABGH的面积.
【变式2-1](2024•安徽芜湖•模拟预测)如图,直线11:%=根丫+?11与直线/2:%=爪丫+九2,分别与抛物线
T-.y1=2px(p>0)交于点和点在x轴同侧).当人经过T的焦点尸且垂直于x轴时,|A8|=1.
(1)求抛物线T的标准方程;
(2)线段/。与2。交于点X,线段N8与CO的中点分别为M,N
①求证:M,H,N三点共线;
②若2\HM\=\HN\=2,求四边形48。的面积.
【变式2-2](2024•全国•模拟预测)已知椭圆E5+/=l(a>b>0)的离心率为当且点(1,第在椭圆E
上.
(1)求椭圆E的方程;
(2)已知4B,C为椭圆上三个点,。为坐标原点,若四边形。4BC为矩形,求四边形04BC的面积.
2
【变式2-3](2024・山东济南•二模)已知点3(4,可)是双曲线T京一步=1上一点,T在点B处的切线与工
轴交于点4
(1)求双曲线T的方程及点4的坐标;
(2)过力且斜率非负的直线与T的左、右支分别交于N,M.过N做NP垂直于x轴交7于P(当N位于左顶点时认为N
与P重合).C为圆E:(x-1)2+(y+2/=1上任意一点,求四边形M8PC的面积S的最小值.
【题型3三角形面积之比问题】
[例3](2024・重庆•模拟预测)已知%(―c,0)/2(c,0)分别是椭圆的「+,=l(a>。,>0)的左右焦点,
如图,抛物线C2:V=—2px(p>0)的焦点为Fi(-c,0),且与椭圆在第二象限交于点P,|PF/=*,延长PF1
与椭圆交于点Q.
(1)求椭圆的离心率;
(2)设4PFi/MSQF14的面积分别为Si,52,求蓑
【变式3-1](2024・四川南充•二模)如图,已知四边形2BCD的四个顶点都在抛物线d=4y上,且N,B
在第一象限,力C〃久轴,抛物线在点/处的切线为/,且BD〃L
(1)设直线CB,CD的斜率分别为左和k',求k+1的值;
(2)尸为AC与BD的交点,设△BCD的面积为Si,△PAD的面积为S2,若tanNBG4=2,求2的取值范围.
*
【变式3-2](2024•辽宁・模拟预测)设动点G(x,y)到点F(1,0)的距离与它到直线/:久=4的距离之比为点记
点G的轨迹为曲线C.
(1)求C的方程;
(2)力为C与乂轴的负半轴的交点,B为直线尤=1与C在第一象限的交点,直线厂过点(-2,3),且与C相交于M,N
两点,过点N作垂直于x轴的直线分别与直线相交于点P,Q,分别记aANQ与△4PQ的面积为Si与S2,
求证:Si=2s2.
【变式3-3](2024•新疆•三模)己知椭圆小真+,=1(£1>6>0)的左右焦点分别为尸1,F2,离心率为
过抛物线。2:步=2ax焦点的直线交抛物线于M,N两点,|MN|的最小值为4.连接M。,N。并延长分别交g
MN
于4,8两点,且点A与点M,点B与点N均不在同一象限,△OMN与404B的面积分别记为S^,SAOAB.
⑴求CI和C2的方程;
(2)记4=沁匕求久的最小值.
【题型4三角形面积之和、之差问题】
【例4】(23-24高二下•福建泉州•期中)已知抛物线C:y2=2px(0<p<3),其焦点为尸,点Q(m,2旧)在
抛物线C上,且|QF|=4.
(1)求抛物线C的方程;
(2)。为坐标原点,4B为抛物线上不同的两点,且。
(i)求证直线4B过定点;
(ii)求△AFO与△力80面积之和的最小值.
【变式4-1](2024•上海•模拟预测)如图所示,在平面直角坐标系中,椭圆+=1的左,右焦点外
别为%,%,设P是第一象限内「上的一点,P%、P4的延长线分别交「于点色、Q2-
(1)求4P%Q2的周长;
⑵求△PF1Q2面积的取值范围;
(3)求S^pFiQz-S^PFZQI的最大值.
【变式4-2](23-24高二下•四川泸州•阶段练习)已知抛物线C:y2=2p久(p>0)的焦点为凡M(m,—|)为C
上一点,且|MF|=:
⑴求C的方程;
(2)过点P(4,0)且斜率存在的直线l与C交于不同的两点4B,且点B关于x轴的对称点为D,直线2。与K轴交于
点Q.
(i)求点Q的坐标;
(ii)求△OAQ与aOAB的面积之和的最小值.
【变式4-3](2024•陕西西安•模拟预测)在平面直角坐标系中,。为坐标原点,动点M(x,y)到定点F(l,0)
的距离和它到定直线=4的距离之比是常数点设动点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点N(-1,0)的直线与曲线C相交于点N,8(不在x轴上),记线段/尸的中点为P,连接尸。,并延长
交曲线C于点0,求^FPl^ABND的面积之和的取值范围.
【题型5已知面积求其他量】
【例5】(2024•全国•模拟预测)己知椭圆后:a+左=1(。>匕>0)的左、右焦点分别为%,外,离心率为券,
点2在椭圆E上,且=2|力/21,的面积为4夕,则椭圆E的焦距为()
A.4V2B.8V2C.6D.12
【变式5-1](2024•四川德阳•模拟预测)己知双曲线/:捺―《=1(a>0,6〉0)的焦距为2,,右顶点为力,
过/作x轴的垂线与E的渐近线交于M、N两点,若SMONNc2,则E的离心率的取值范围是()
与4
A.[苧2]B.殍回C.[V2<V3]D.[V3,2]
【变式5-2](2024•山东•二模)已知双曲线的中心为坐标原点。,点P(2,-&)在双曲线上,且其两条渐近
线相互垂直.
(1)求双曲线的标准方程;
(2)若过点Q(0,2)的直线1与双曲线交于E,F两点,△。5尸的面积为2a,求直线[的方程.
【变式5-3](2024•广东茂名•一模)已知抛物线=2px(p>0),尸为抛物线的焦点,P,Q其为准线上的
两个动点,且PF1QF.当|PF|=2|QF|时,|PQ|=5.
(1)求抛物线C的标准方程;
(2)若线段。吃(2尸分别交抛物线(7于点48,记的面积为Si,△4BF的面积为52,当SI=952时,求|PQ|
的长.
【题型6三角形(四边形)面积的最值、范围问题】
【例6】(2024•陕西安康•模拟预测)已知椭圆C:《+y2=1(a>1)的离心率为.,椭圆C的动弦过椭
圆C的右焦点F,当4B垂直支轴时,椭圆C在A,B处的两条切线的交点为M.
(1)求点M的坐标;
(2)若直线AB的斜率为过点M作x轴的垂线I,点N为I上一点,且点N的纵坐标为-直线NF与椭圆C交
于P,Q两点,求四边形力PBQ面积的最小值.
【变式6-1](2024•北京•模拟预测)已知O为坐标原点,椭圆。/+4丫2=2上一点。的横坐标为1,斜
率存在的直线/交椭圆C于/,B两点,且直线94,的斜率之和等于1.
⑴求|。。|;
(2)若点。在第一象限,探究△AB。的面积是否有最大值?若有,求出最大值;若没有,请说明理由.
【变式6-2](2024・全国・模拟预测)已知双曲线。5—3=1(。>0,6>0)过点以],其中c=7出+炉),
且双曲线C上的点到其两条渐近线的距离之积为詈.
⑴求双曲线C的标准方程;
(2)记。为坐标原点,双曲线C的左、右顶点分别为4SP为双曲线C上一动点(异于顶点),M为线段4P的中
点,Q为直线x=g上一点,且力P〃OQ,过点Q作QN10M于点N,求面积的最大值.
【变式6-3](2024•江苏南通•三模)已知抛物线C:/=2py(p〉0)的焦点为F,直线I过点F交C于48两点,
C在4B两点的切线相交于点P,4B的中点为Q,且PQ交C于点E.当/的斜率为1时,\AB\=8.
⑴求C的方程;
(2)若点P的横坐标为2,求|QE|;
⑶设C在点E处的切线与P4PB分别交于点M,N,求四边形4BNM面积的最小值.
►过关测试
一、单选题
1.(2024•内蒙古赤峰•二模)设点尸是椭圆C:盘+*=1上一点,%,6分别为椭圆C的左、右焦点,且
36Z5
△PF/2的重心为G,若|P%|=2|PFz|,则的面积为()
A.16V7B.|V7C.12V7D.1V7
2.(2024•河北•模拟预测)点%(-2,0),尸2(2,0)为等轴双曲线C的焦点,过尸2作刀轴的垂线与C的两渐近线分
别交于4B两点,则△AOB的面积为()
A.2V2B.4C.4V2D.8
3.(2024・四川宜宾•模拟预测)已知抛物线C:y2=6x,过动点P作两条相互垂直的直线,分别与抛物线C
相切于点4B,则4B面积的最小值是()
A.6B.9C.12D.18
22
4.(2024•江西九江三模)已知椭圆C邑+专=l(a〉b>0)的左右焦点分别为%,尸2,过尸1且倾斜角为三的
CLD6
直线交C于第一象限内一点4若线段力F1的中点在y轴上,△4F1F2的面积为2百,则c的方程为()
A.^+y2=lB.^+^=1
3y32
C.兰+g=1D.且+《=1
9396
5.(2024・辽宁•一•模)已知双曲线C:^•一/=1的下焦点和上焦点分别为%,F2,直线y=%+zn与C交于
4B两点,若△F2A8面积是面积的4倍,则根=()
A.3B.-3C.—D.--
33
6.(2024•广东广州•一模)双曲线。%2一产=4的左,右焦点分别为%,92,过尸2作垂直于X轴的直线交双
曲线于4,8两点,△力Fi&QBFi&qF遇B的内切圆圆心分别为。1,。2,。3,则△。1。2。3的面积是()
A.6V2-8B.6V2-4C.8-4V2D.6-4V2
7.(2024•云南•模拟预测)已知抛物线C:y2=4%的焦点为凡过点F的两条互相垂直的直线几%分别与抛物
线C交于点4B和D,E,其中点4。在第一象限,则四边形4DBE的面积的最小值为()
A.64B.32C.16D.8
8.(2024・重庆•模拟预测)己知抛物线C:y=4久的焦点为F,过尸且斜率为1的直线与抛物线交于力、B
两点(4在x轴上方),过点4、B作准线的垂线,垂足分别为T、B'线段4身'中点为E,四边形A4'EF和四边形
BB2F的面积分别记为Si,S2,则2=()
A.3-2V2B.3-V2C.3+V2D.3+2企
二、多选题
9.(2024・云南・二模)已知点P为双曲线-9=1上任意一点,过点P分别作E的两条渐近线的垂线,垂
足分别为N,记△PMN的面积为S,则()
A.AMPN=yB.\PM\■\PN\=y
C.PM-PN=—
49AS考
10.(2024•江西•模拟预测)已知力(—2,0),8(2,0),C(l,0),动点M满足MA与MB的斜率之积为—:,动点M
4
的轨迹记为r,过点c的直线交r于p,Q两点,且p,Q的中点为R,则()
A.M的轨迹方程为9+7=1
B.|MC|的最小值为1
C.若。为坐标原点,则△OPQ面积的最大值为日
D.若线段PQ的垂直平分线交x轴于点D,则R点的横坐标是D点的横坐标的4倍
11.(2024・广东•二模)抛物线T:/=2py(p>o)焦点为F,且过点力(4,4),斜率互为相反数的直线力C,AD
分别交T于另一点C和。,则下列说法正确的有()
A.直线CD过定点
B.T在C,。两点处的切线斜率和为-4
C.T上存在无穷多个点到点F和直线y=5的距离和为6
D.当C,。都在/点左侧时,△力CD面积的最大值为空言
三、填空题
12.(2024•海南•模拟预测)已知抛物线C:俨=20久位>0)的焦点为尸,过尸且斜率为1的直线I交C于力,B
两点,若△AOB的面积为VL则「=.
13.(2024•内蒙古呼和浩特•二模)已知椭圆M:'+y2=1,经过坐标原点的两条直线分别与椭圆M相交于
A、B、C、。四个点,若该两条直线的斜率分别为a、k2,且的・他=-5则△力。C的面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九年级历史下册单元评价检测课件
- 《证劵基础知识最终》课件
- 《激光切割工艺》课件
- 荒山绿化项目可行性研究报告
- 《人力资源管理奥秘》课件
- 股份解禁协议三篇
- 专业毕业实习报告4篇
- 2023年-2024年企业主要负责人安全教育培训试题及答案(易错题)
- 2024员工三级安全培训考试题带解析答案可打印
- 2023年-2024年项目部安全管理人员安全培训考试题附答案【培优A卷】
- 无人机表演服务合同
- 呼吸内科临床诊疗指南及操作规范
- 物业经理转正述职
- 贸易岗位招聘面试题及回答建议(某大型国企)2025年
- 世界职业院校技能大赛高职组“关务实务组”赛项参考试题及答案
- 高中历史教师资格考试面试试题及解答参考(2024年)
- 北师大版(2024新版)生物七年级上册期末考点复习提纲
- 2024年理论中心组学习心得体会模版(2篇)
- 浙江省杭州市2023-2024学年六年级上学期语文期末试卷(含答案)
- 环保行业工业废气污染防治技术路线方案
- 电工的职业健康培训
评论
0/150
提交评论