鸡兔同笼教案_第1页
鸡兔同笼教案_第2页
鸡兔同笼教案_第3页
鸡兔同笼教案_第4页
鸡兔同笼教案_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

鸡兔同笼教案鸡兔同笼教案「篇一」【学习目标】1、尝试用不同的方法解决“鸡兔同笼”问题,并体会代数方法的一般性。2、解决“鸡兔同笼”问题可用猜测、列表、假设或方程解等方法。3、体会到数学问题在日常生活中的应用。【学习重难点】1、重点是尝试用不同的方法解决“鸡兔同笼”问题。2、难点是在解决问题的过程中培养逻辑推理能力。【学习过程】一、故事引入在我国古代流传着很多有趣的数学问题,“鸡兔同笼”就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。阅读书本P112鸡兔同笼的故事,能用你自己的话表述一下题目的意思吗?二、探索新知1、阅读P113例1,根据书本提示,会用列表法求出鸡、兔各几只吗?(完成课本表格。)2、假设笼子里都是鸡或者都是兔,脚数会发生什么变化呢?能列式解决吗?(会用假设法解决“鸡兔同笼”问题)3、自己动笔,尝试用方程的方法解决鸡兔只数的问题?(有困难的可参考书本P114)4、用假设或者解方程的方法解决P112“鸡兔同笼”问题(1)方程解:(2)算术解:解:设鸡有x只,那么兔就有(35-x)只。解:假设都是鸡。根据鸡兔共有94只脚来列方程式2×35=70(只)2x+(35-x)×4=9494-70=24(只)2x=4624÷(4-2)=12(只)x=2335-12=23(只)35-23=12(只)答:鸡有23只,兔有12只。答:鸡有23只,兔有12只。5、以上三种解法,哪一种更方便?☆友情小提示:要解决“鸡兔同笼”问题,可以采用假设法或方程解都可以。用方程解更直接。6、阅读P114阅读资料,了解下古人是怎样解决鸡兔同笼问题的。三、知识应用:独立完成P115“做一做”,组长检查核对,提出质疑。四、层级训练:1.巩固训练:完成P116练习二十六第1--5题。2.拓展提高:练习二十六第6、7题。及P117“思考题”。五、总结梳理回顾本节课的学习,说一说你有哪些收获?学习心得__________(a.我很棒,成功了;b.我的收获很大,但仍需努力。)自我展示台:(把你个性化的解答或创新思路写出来吧!)鸡兔同笼教案「篇二」数也可以求出来。6、小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。*古人是怎样解决“鸡兔同笼”问题的?1、假如让鸡抬起一只脚,兔子抬起两只脚,还有94÷2=47只脚。2、这时每只鸡一只脚,每只兔子两只脚。笼子里只要有一只兔子,则脚的总数就比头的总数多1。3、这时脚的总数与头的总数之差47-35=12,就是兔子的只数。三、巩固练习课本105页“做一做”的1、2题。四、课堂总结:师:通过今天的学习,你有哪些收获?板书设计:鸡兔同笼化繁为简列表法假设法:1)假设都是鸡2)假设都是兔教学反思:人教版四年级下册第九单元数学广角中—《鸡兔同笼》教材分析:“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,其教学方法与常规课不同。数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。学情分析:“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的应用意识与应用能力方面需要进一步培养。教学目标:1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。教学重点:会用画图法、列表法和假设法解答“鸡兔同笼”问题。教学难点:用合理的方法解答生活中的“鸡兔同笼”问题。教具准备:多媒体课件、表格等。教学过程:一、创设情境、揭示课题。1.播放《奔跑吧,兄弟》主题曲,同学们,你们知道这是什么节目的主题曲吗?2.播放视频,介绍:20xx年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著,今天,我们就来研究中国历史上著名的数学趣题“鸡兔同笼问题”。(板书课题)2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看。出示题目:鸡兔同笼一共有8个头,一共有26条腿。鸡和兔各有几只?二、合作探究、学习新知:活动一:探究用猜测列表法解决“鸡兔同笼”问题。学习方式:自学教材,小组合作交流1.师:请大家自由读题,你们都知道了什么信息?生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师:还有补充吗?有两个隐藏条件看谁细心发现了。生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。(1)师:我们采用列表法得出的答案,好吗?翻开书104页,按照顺序列表试一试。(2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。(汇报交流)小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。活动二:探究用假设法解决“鸡兔同笼”问题。学习方式:自学教材,小组合作交流。小组1:假设全都是鸡:2×8=16(条)26-16=10(条)10÷2=5(只)兔子8-5=3(只)鸡谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法”。师:除了可以假设都是鸡,还可以怎样假设呢?小组2:引导学生说出都是兔,并演示。师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)3、发散思考、加深理解。下面我们来帮陈赫找到他房间的密码,解放他吧!出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?师:我们发现课本上的假设法理解起来比较抽象,现在大家换一种假设法来思考。你们看,这样行不行?生:是什么样的假设法,让我们先睹为快!师:是这样的,如果让每只兔子都立起两条腿,这时,鸡和兔的脚数是相等的,接下来会出现什么样的情况呢?生:每个头有两条腿,35个头是70条腿。(94-70)少了24条腿,正好可以求出兔子的只数,24除以2等于12。生:鸡的只数为:35-12=23(只)。师:还有别的做法吗?怎样解答?生:把每只鸡的翅膀看成是两条腿。这样每只头对应的是4条腿。共有140条腿,多出46条腿,多出的是23只鸡的腿,那么,兔的只数鸡兔同笼教案「篇三」教学目标:

1、使学生了解“鸡兔同笼”问题,掌握用尝试法、假设法和代数法解决问题,初步形成解决此类问题一般性策略。

2、通过自主探索、合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会代数方法的一般性。

3、使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:尝试用不同的方法解决鸡兔同笼问题,对尝试法有所了解和体验,并使学生体会假设方法解决此类问题的优越性。

教学难点:在解决问题的过程中培养学生的逻辑推理能力。

教具准备:电脑课件

教学过程:

一、创设情境、揭示课题:1.同学们,你们知道吗?《孙子算经》是我国古代一部非常重要的数学名著,里面描述了很多数学名题。(电脑)其中,有这样一个非常有趣的问题:“今有雉兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?”。师:这句话中,你们有不明白的词语吗?(电脑出示:题目中的“雉”(读成“zhì”),就是野鸡。)谁来说一说,这道题目是什么意思?师:是呀,这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子。

师:古代人对这样的题目有着自己独到的见解,我们把类似于这样的问题,统统称为:“鸡兔同笼”。今天,我们就来研究中国历史上著名的数学趣题

“鸡兔同笼问题”。板书课题。2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看屏幕。出示题目:

鸡兔同笼一共有8个头,一共有26条腿。

鸡和兔各有几只?

二、主动探究、合作交流、学习新知:

1.师:请大家自由读题,你们都知道了什么信息?

生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?

师:还有补充吗?有两个隐藏条件看谁细心发现了。

生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?

师评:他还发现了隐藏条件,审题真细心。

2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?

学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。

3.独立思考:

(1)你想怎样解决这个问题?生举手,师:不着急说,先自己想一想!学生静想10秒。

(2)师:你们愿意自己独立解决这个问题,还是我教给你们方法你们做?好,那就请你们小组合作交流,

在小组长的带领下,用自己喜欢的方法来解决这个问题。比一比,看看那个组想出的办法多,方法巧。

学生合作,教师巡视指导。

4、汇报:(汇报时,师生、生生质疑,评价)

A、师:谁愿意展示你的方法?(1)列表法:

小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)

先假设有8只鸡,0只兔子,腿就有16条。腿太少,然后又假设有7只鸡,1只兔子,腿还是太少了。这样试下去就得到了有3只鸡,5只兔子。

师:学生说出“7只鸡,1只兔子”,问“怎样计算出的腿数?”7×2+1×4=14+4=18

问“结果就是3只鸡,5只兔子吗?怎样可以知道这个结果是正确的?”

是的,可以用算式来验证:3×2+5×4=6+20=26(条)

师:谁和他的方法一样?能再讲讲吗?

师:追问“有些同学在填表时写出的腿数特别快,让我们采访一下有什么秘诀?”

(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2。反之依然,所以列表列得特别快。)

师:评价“像你们这样,采用列表的方法,不重复、不遗漏的写出所有可能的答案。这种逐一列举的方法在数学中也称为“枚举法”

师:他们是先考虑鸡,还可以怎样列表呢?假设有8只兔,0只鸡,又假设有7只兔,1只鸡,……这样做和刚才的道理一样,也是可以的!

师:除了像他们这样逐一列举,还有不同的列表方法吗?

小组3:从中间确定。如果没有教师介绍。受到这些同学的启发,我是这样做的:假设鸡兔各有4只,

4×4+4×2=24,少了。就增加兔子只数,减少鸡的只数。5只兔子,3只鸡。5×4+3×2=26

问:你们觉得这种方法怎么样?简便、快捷。

师:用列表法解决问题,要想做到又快又准确,你们认为应该要注意些什么问题?B、师:刚才我们同学介绍了用列表法来解决这个问题,还有别的方法吗?谁愿意来给大家讲一讲。(2)画图法:先画好8个圆圈代表8个头,给每只动物先安上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。一次增加2条腿,一只鸡就变成了一只兔,要把10条安完,要把5只鸡变成兔。

问:谁听懂他的方法了?能再说说吗?你觉得这样做怎么样?

C、师:画图的方法非常便于观察、非常容易理解。还有什么方法吗?

(3)算术法。

小组1:假设全都是鸡:2×8=16(条)26-16=10(条)

10÷2=5(只)……兔子

8-5=3(只)……鸡

谁有不懂得问题要问他?你们看看是不是这样:看屏幕演示

板书“假设法。”

师:除了可以假设都是鸡,还可以怎样假设呢?

小组2:引导学生说出都是兔,课件演示(4)拓展延伸:解答这个问题,还有不同的方法吗?

启发学生思考;展示学生的个性解法并以学生的名字来命名。……

(5)初步小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)5、了解鸡兔同笼的历史:(进行爱国主义教育,激励学生。)

同学们,你们知道古人是如何解答鸡兔同笼问题的吗?刚才的题目(出示):今有雉兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?

书中给出了一种巧妙的解法,今译为:94÷2-35=12(头)

……

兔的头数35-12=23(头)

……

鸡的头数这就是最早的鸡兔同笼问题。

看了这段资料,你有什么想法,你有什么想说的吗?

(为我们的祖先感到骄傲,其实老师也为你们感到骄傲,你们在这么短的时间内就想出了这么多解决问题的办法,你们很了不起!

6、小结方法:刚才我们用这么多的方法解决了鸡兔同笼问题,你最喜欢那一种方法,说说你的理由。

7、下面我们用学到的好方法来解决书本中的数学问题,好吗?

出示:鸡兔同笼,有20个头,54条腿,鸡兔个有几只?(学生独立完成,教师巡视指导)指名板演。

讲评订正时,选一个做的最快的同学来说出自己的想法。提问动作慢的:你为什么没做完呢?

8、再次小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用画图和列表的方法比较快,数目比较大时,用假设法比较好。

三、解决实际问题、课堂延伸。

1、鸡兔同笼问题从我国传到日本,就变成了“龟鹤问题”,看来这类问题我们不能仅仅局限在鸡兔问题上。(如果时间不够,就给学生介绍一下)

龟:我们和鹤一共有6个头。

鹤:我们和龟一共有16条腿

学生汇报,交流。

像这样的问题,在现代生活中随处可见。体育比赛中也有这样的“鸡兔同笼”题目呢!

2、学生乒乓球比赛,有8个球案在进行单打、双打比赛,一共有22人正在比赛。单打的球案有几张?双打的球案有几张?

在我们购物的时候也有鸡兔同笼问题呢?

3、小明买了6角和8角的邮票共花5元,分别买了多少张?

四、课堂总结:

师:通过今天的学习,你有哪些收获?

师:是呀,我们学会了这么多的好方法,说明大家都是好样的,继续努力吧!

教学反思本人在教学《鸡兔同笼》的过程中,主要体现以下四个特点:

1、抓住学生认知起点设计教学,运用多种方法引导学生融会贯通。

课前调查,我发现班级中很多学生在中年级就已经通过作智力题,接触过鸡兔同笼问题,有的会用算术法解决这类问题,有些学生还会用方程解决。这样,学生之间的层次是不一致的。如果这节课只是一味地教学课本上要求的列表法,学生会觉得很乏味。于是,我决定在这节课进行多种方法的融会贯通。为了更好地达到课堂高效率,课前我布置学生预习,了解有关鸡兔同笼问题的多种解题方法。这样,即使是没有接触过鸡兔同笼问题的学生,也不会在课堂上感到措不及手。其实,多种解题方法的思路是有密切联系的,举一可以反三,从课堂效果来看,学生掌握的还是不错的。多种数学思想、方法的渗透,提高了学生的解题能力。本节课学生不仅学会了基本的画图、列表这两种解决问题的方法,还学会了假设、折半、金鸡独立、兔子起立等巧妙的解决问题的方法。受到了多种数学思想方法的熏陶。培养了孩子解决问题的能力,提高了孩子的思维水平。

2、体现了以教师为主导、学生为主体的思想。

新课程要求我们给学生创设一个开放、自由的空间,让学生真正成为课堂的主人。但是,没有教师正确引导的课堂未必是高效率的,因此,课堂上我把学生分为四人小组合作探究,但是给每个组下发的探究思考题是有一定指向性的。因为,如果没有指向性,学生所想出的方法未必会多姿多彩。当然,课堂上,我允许学生用自己喜欢的方法解决问题,并给学生搭建一个展示的舞台,充分张扬学生的个性。才使课堂出现争先恐后、积极主动参与解决问题的场景。

3、师生交流充分,交流作用发挥明显。课堂上,学生各自发表自己的意见,倾听别人的意见。互相评价,取长补短。渠道畅通,课堂是流动的,有生命的,学生的交流如春雨滋润着孩子的心灵,使学生的思维在交流中不断提升。

4、教学设计重点突出,难点亦有突破。课堂上,虽然解决问题的方法很多,但是画图法、列表法是解决问题的基本方法。在课堂上教师重点让学生展示了这两种方法,并进行了师生质疑,使基本方法人人都会,其他方法作为开阔学生的思路,简化处理。使不同的学生学不同的数学,不同水平的孩子在课堂上都有所收获。鸡兔同笼教案「篇四」2009-2010学年度上学期六年级数学科教案主备人:王贞第

元教学目标:

1、了解“鸡兔同笼”的问题,感受我国古代数学问题的趣味性,提高学习数学的兴趣。

2、通过自主探索,合作交流,让学生体会代数方法的优越性。教学重点、难点:1、重点:尝试用不同的方法解决问题,使

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论