兰州信息科技学院《建筑制图与测绘》2023-2024学年第一学期期末试卷_第1页
兰州信息科技学院《建筑制图与测绘》2023-2024学年第一学期期末试卷_第2页
兰州信息科技学院《建筑制图与测绘》2023-2024学年第一学期期末试卷_第3页
兰州信息科技学院《建筑制图与测绘》2023-2024学年第一学期期末试卷_第4页
兰州信息科技学院《建筑制图与测绘》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

装订线装订线PAGE2第1页,共3页兰州信息科技学院

《建筑制图与测绘》2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中的姿态估计是指确定物体在三维空间中的位置和方向。以下关于姿态估计的说法,错误的是()A.姿态估计可以通过单目相机、双目相机或深度相机来实现B.基于深度学习的方法在姿态估计任务中表现出了较高的精度C.姿态估计在机器人操作、增强现实等领域有着重要的应用价值D.姿态估计的结果总是非常精确,不受物体形状和遮挡的影响2、当利用计算机视觉进行图像超分辨率重建任务,将低分辨率图像恢复为高分辨率图像,以下哪种深度学习模型可能在重建效果上表现出色?()A.SRCNNB.ESPCNC.DRCND.以上都是3、计算机视觉中的行人重识别是在不同摄像头拍摄的图像或视频中识别出特定的行人。以下关于行人重识别的叙述,不正确的是()A.行人重识别需要提取具有判别性的行人特征,克服视角、光照和姿态的变化B.深度学习方法在行人重识别任务中取得了显著的性能提升C.行人重识别在智能安防、视频监控和人员追踪等领域有重要的应用D.行人重识别技术已经能够在大规模数据集上达到100%的准确率4、在计算机视觉的图像特征提取中,假设要提取对光照、旋转和缩放具有不变性的特征。以下关于特征提取方法的描述,正确的是:()A.SIFT特征具有良好的不变性,但计算复杂度高,实时性差B.HOG特征对光照变化适应性强,但对旋转和缩放较敏感C.LBP特征能够快速提取,但特征表达能力有限D.没有一种特征提取方法能够同时满足对光照、旋转和缩放的不变性要求5、在计算机视觉的场景理解任务中,需要对图像中的物体、关系和上下文进行综合分析。假设要理解一个室内场景的布局和功能,以下哪种信息可能是最关键的?()A.物体的形状和颜色B.物体之间的空间位置关系C.图像的亮度和对比度D.图像的拍摄角度6、计算机视觉在医学图像分析中有着重要作用。假设要通过眼底图像检测糖尿病性视网膜病变,以下关于模型训练中数据标注的难度,哪一项是最为显著的?()A.病变区域的边界模糊,难以精确标注B.眼底图像的质量参差不齐,影响标注准确性C.标注人员的医学知识不足,导致标注错误D.数据量过大,标注工作耗时费力7、计算机视觉在工业检测中的应用越来越广泛。假设要检测电子电路板上的微小缺陷,以下关于图像采集设备的选择,哪一项是最为关键的?()A.选择高分辨率的数码相机,获取清晰的图像B.选用具有大景深的镜头,确保整个电路板都清晰成像C.采用高速摄像机,快速采集大量图像D.选择价格低廉的图像采集设备,降低成本8、在计算机视觉的三维重建任务中,假设要从一组二维图像恢复出物体的三维结构。以下关于三维重建方法的描述,正确的是:()A.基于立体视觉的方法需要多视角的图像,并且对相机的标定精度要求不高B.结构光方法能够快速准确地获取物体表面的三维信息,但对环境光敏感C.从运动中恢复结构(SfM)方法只适用于静态场景,无法处理动态物体D.所有的三维重建方法都能够生成高精度的、完整的物体三维模型9、在计算机视觉的目标跟踪任务中,需要在连续的图像帧中持续跟踪一个特定的目标。假设要跟踪一个在运动场上快速移动且形状变化的运动员,同时存在其他相似物体的干扰。以下哪种目标跟踪算法在这种具有挑战性的场景下表现更佳?()A.基于卡尔曼滤波的跟踪B.基于粒子滤波的跟踪C.基于深度学习的跟踪D.基于均值漂移的跟踪10、计算机视觉在文物保护和修复中的应用逐渐增多。假设要对一幅古老的绘画进行数字化修复和增强,以下关于颜色恢复的挑战,哪一项是最为显著的?()A.由于年代久远,原画作的颜色信息缺失严重B.不同区域的颜色褪色程度不一致,难以统一恢复C.缺乏对原画作创作时所用颜料的了解,难以准确还原颜色D.修复过程中可能引入新的颜色偏差,影响修复效果11、在一个基于计算机视觉的智能交通监控系统中,需要对车辆的类型、速度和行驶轨迹进行分析。以下哪种技术在车辆分析方面可能发挥关键作用?()A.目标检测和跟踪B.车牌识别C.轨迹预测D.以上都是12、计算机视觉在智能交通系统中的应用可以优化交通流量和提高安全性。假设要通过计算机视觉监测道路上的车辆拥堵情况。以下关于计算机视觉在智能交通中的描述,哪一项是错误的?()A.可以通过车辆检测和计数来评估道路的拥堵程度B.能够识别车辆的类型和行驶方向,为交通管理提供数据支持C.计算机视觉在智能交通中的应用完全不受恶劣天气和光照条件的影响D.可以与交通信号控制系统联动,实现自适应的交通信号配时13、计算机视觉中的目标跟踪是指在视频序列中持续跟踪特定的目标。以下关于目标跟踪的叙述,不正确的是()A.目标跟踪可以基于特征匹配、滤波算法或深度学习方法来实现B.目标的外观变化、遮挡和背景干扰等因素会给目标跟踪带来挑战C.目标跟踪在智能监控、人机交互和自动驾驶等领域有着广泛的应用D.目标跟踪算法能够在任何情况下都准确地跟踪目标,不受复杂环境的影响14、对于视频中的目标跟踪任务,假设目标在视频中经历了快速的外观变化和严重的遮挡。以下哪种策略有助于保持跟踪的准确性和稳定性?()A.结合目标的运动模型和外观模型进行预测B.仅依赖目标的初始外观特征进行跟踪C.当出现遮挡时,停止跟踪并等待目标重新出现D.随机调整跟踪算法的参数15、在计算机视觉的应用中,人脸识别是一个常见的任务。假设一个公司要建立一个门禁系统,通过人脸识别来允许员工进入。为了提高人脸识别的准确性和鲁棒性,以下哪种技术通常会被采用?()A.基于几何特征的人脸识别B.基于模板匹配的人脸识别C.基于深度学习的人脸识别,结合多模态数据D.基于颜色特征的人脸识别16、在一个基于计算机视觉的工业质量检测系统中,需要检测产品表面的微小缺陷,如划痕、凹坑等。由于缺陷的尺寸较小且形态多样,以下哪种图像处理算法可能对缺陷检测最为有效?()A.边缘检测算法B.形态学操作C.阈值分割算法D.霍夫变换17、在计算机视觉的图像增强任务中,假设要提高一张低光照图像的质量。以下关于图像增强方法的描述,正确的是:()A.直方图均衡化能够均匀分布图像的灰度级,但可能会导致细节丢失B.基于滤波的方法可以有效地去除噪声,但同时也会模糊图像的边缘C.伽马校正只适用于校正过亮的图像,对于低光照图像效果不佳D.所有的图像增强方法都能够在不引入任何失真的情况下提高图像质量18、计算机视觉在医学影像分析中的应用有助于辅助医生进行诊断和治疗。假设要分析一张脑部CT图像,以下关于医学影像分析中的计算机视觉应用的描述,哪一项是不正确的?()A.可以通过分割脑组织、检测病变区域等方法,为医生提供定量的分析结果B.深度学习模型能够自动学习医学影像中的特征,辅助医生发现潜在的疾病C.计算机视觉在医学影像分析中的应用需要遵循严格的医学伦理和法规D.计算机视觉系统可以完全替代医生的诊断,不需要医生的进一步审查和判断19、假设要开发一个能够自动识别水果种类和品质的计算机视觉系统,用于水果分拣和质量评估。在获取水果图像时,可能会受到光照、角度和遮挡等因素的影响。为了提高识别的准确性和鲁棒性,以下哪种图像预处理技术可能是关键?()A.图像增强B.图像去噪C.图像归一化D.图像分割20、在计算机视觉的文本检测和识别任务中,假设要从一张图片中提取并识别其中的文字信息。以下关于文本检测和识别的描述,哪一项是不正确的?()A.可以先通过文本检测算法定位图片中的文本区域,然后进行识别B.深度学习中的卷积神经网络在文本识别中表现出色,能够准确识别各种字体和风格的文字C.文本检测和识别对于弯曲、倾斜和模糊的文字能够轻松应对,没有任何困难D.可以结合光学字符识别(OCR)技术,将图片中的文字转换为可编辑的文本21、计算机视觉中的姿态估计任务是估计人体或物体在三维空间中的姿态。假设要估计一个人体模特的姿态。以下关于姿态估计的描述,哪一项是不正确的?()A.可以通过关键点检测和关节角度计算来估计人体姿态B.深度学习中的卷积神经网络可以直接预测人体姿态的参数C.姿态估计在虚拟现实和增强现实等应用中具有重要作用D.姿态估计的结果总是非常准确,不受人体遮挡和复杂动作的影响22、在计算机视觉的场景理解任务中,需要理解整个图像的语义信息。假设要分析一张城市街道的图像中包含的物体和它们之间的关系,以下关于场景理解方法的描述,正确的是:()A.单独对图像中的每个物体进行识别和分类就能实现场景理解B.忽略图像中的上下文信息和空间布局对场景理解没有影响C.利用深度学习中的语义分割和图模型可以更好地理解场景的结构和语义关系D.场景理解只适用于简单的室内场景,对于复杂的户外场景无法处理23、在计算机视觉的图像超分辨率重建中,提高低分辨率图像的清晰度。假设要将一张模糊的图像重建为清晰的高分辨率图像,以下关于图像超分辨率重建方法的描述,哪一项是不正确的?()A.基于插值的方法通过在像素之间插入新的值来增加图像的分辨率,但可能会导致图像模糊B.基于深度学习的方法能够学习低分辨率图像和高分辨率图像之间的映射关系,重建出更清晰的图像C.图像超分辨率重建可以无限制地提高图像的分辨率,不受原始图像信息的限制D.为了获得更好的重建效果,可以结合多种超分辨率重建方法或使用先验知识24、计算机视觉中的视觉注意力机制用于聚焦图像中的重要区域。以下关于视觉注意力机制的说法,不正确的是()A.视觉注意力机制可以根据图像的特征和任务需求动态地选择关注的区域B.注意力机制能够提高模型的效率和性能,减少对无关信息的处理C.视觉注意力机制在图像分类、目标检测和图像生成等任务中得到了广泛应用D.视觉注意力机制的引入会增加模型的复杂度和计算量,降低模型的训练速度25、在计算机视觉的目标跟踪任务中,假设要在一段视频中持续跟踪一个移动的物体,例如跟踪一只飞行的鸟。物体可能会被其他物体遮挡,并且外观可能会发生变化。以下哪种目标跟踪方法在这种复杂情况下更有可能成功?()A.基于卡尔曼滤波的跟踪方法,预测物体的位置和速度B.基于深度学习的Siamese网络跟踪方法C.只在视频的起始帧确定目标位置,后续帧不再跟踪D.随机选择视频中的区域作为跟踪目标二、简答题(本大题共4个小题,共20分)1、(本题5分)简述图像的色彩校正工具。2、(本题5分)说明计算机视觉在光伏电站监测中的应用。3、(本题5分)解释计算机视觉中的人群密度估计任务。4、(本题5分)解释计算机视觉在玻璃制造中的缺陷检测。三、分析题(本大题共5个小题,共25分)1、(本题5分)解析某艺术展览的线上宣传页面设计,探讨其如何运用视觉元素和交互设计吸引观众在线上了解展览,提高展览的知名度和影响力。2、(本题5分)以特斯拉汽车的超级充电站广告为例,分析其如何通过视觉传达展现快速充电和便捷出行的优势。讨论广告中的色彩、图形和文案的作用。3、(本题5分)以某品牌的户外广告创意设计为例,分析其在画面设计、文案撰写、互动元素等方面如何吸引路人的注意,提升品牌的知名度和美誉度。4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论