莱芜职业技术学院《人工智能技术前沿》2023-2024学年第一学期期末试卷_第1页
莱芜职业技术学院《人工智能技术前沿》2023-2024学年第一学期期末试卷_第2页
莱芜职业技术学院《人工智能技术前沿》2023-2024学年第一学期期末试卷_第3页
莱芜职业技术学院《人工智能技术前沿》2023-2024学年第一学期期末试卷_第4页
莱芜职业技术学院《人工智能技术前沿》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页莱芜职业技术学院《人工智能技术前沿》

2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、人工智能在艺术创作领域也有一定的应用。假设要使用人工智能生成音乐或绘画作品。以下关于人工智能在艺术创作中的描述,哪一项是错误的?()A.可以为艺术家提供灵感和创意,辅助艺术创作过程B.生成的作品具有独特的风格和创意,完全可以与人类艺术家的作品媲美C.人工智能艺术创作仍然需要人类艺术家的指导和审美判断D.引发了关于艺术定义和创作本质的思考和讨论2、在人工智能的语音识别任务中,为了提高在嘈杂环境下的识别准确率,以下哪种技术或方法可能会被重点研究和应用?()A.声学模型的改进B.噪声抑制技术C.多模态信息融合D.以上都是3、在一个利用人工智能进行智能安防的系统中,例如识别监控视频中的异常行为或可疑人员,以下哪种技术可能对于实时处理和准确识别起到重要作用?()A.快速目标检测算法B.高效的特征提取方法C.分布式计算框架D.以上都是4、在人工智能的文本分类任务中,例如将新闻文章分类为政治、经济、体育等类别。假设数据集存在类别不平衡的问题,某些类别的样本数量远远多于其他类别。为了提高分类模型在这种情况下的性能,以下哪种方法是有效的?()A.对少数类进行过采样,增加其数量B.对多数类进行欠采样,减少其数量C.使用不平衡数据直接训练模型,不做处理D.只关注样本数量多的类别,忽略少数类别5、在人工智能的模型训练中,数据预处理是重要的环节。假设要训练一个用于图像识别的模型,以下关于数据预处理的描述,哪一项是不正确的?()A.数据清洗可以去除噪声和异常值,提高数据质量B.数据增强可以通过旋转、缩放等操作增加数据的多样性C.数据归一化可以将数据的值范围统一,有助于模型的训练和收敛D.数据预处理对模型的性能影响不大,可以忽略这一环节,直接进行模型训练6、在人工智能的自然语言生成任务中,如何生成连贯、有逻辑的文本是一个挑战。假设要开发一个能够自动撰写新闻报道的系统,需要考虑文章的结构、语法和语义的一致性。以下哪种方法或技术在提高文本生成质量方面最为关键?()A.预训练语言模型B.强化学习中的奖励机制C.语法规则约束D.以上方法结合使用7、人工智能中的情感识别不仅可以应用于人类的情感分析,还可以用于动物的行为研究。假设我们要通过动物的行为来判断其情感状态,以下关于动物情感识别的说法,哪一项是正确的?()A.动物的情感表达和人类完全相同B.可以直接使用人类情感识别的模型和方法C.需要结合动物的生理特征和行为模式进行分析D.动物的情感识别没有实际应用价值8、人工智能中的无人驾驶技术面临着众多技术和法律挑战。假设我们在讨论无人驾驶汽车的责任归属问题,以下关于无人驾驶责任的说法,哪一项是不正确的?()A.事故责任的判定应该综合考虑多种因素B.完全由无人驾驶汽车的制造商承担责任C.法律法规需要随着技术发展不断完善D.乘客在某些情况下也可能承担一定责任9、知识图谱是一种用于表示知识和关系的结构化数据模型。以下关于知识图谱的说法,不正确的是()A.知识图谱可以整合来自不同来源的知识,构建一个全面的知识体系B.知识图谱中的节点表示实体,边表示实体之间的关系C.知识图谱在智能搜索、推荐系统和问答系统等领域有着重要的应用D.构建知识图谱非常简单,不需要大量的人力和时间投入10、在人工智能的研究中,可解释性是一个重要的问题。假设我们训练了一个复杂的深度学习模型用于医疗诊断,但是其决策过程难以理解。那么,以下关于模型可解释性的说法,哪一项是不正确的?()A.可解释性对于建立用户信任至关重要B.一些可视化技术可以帮助理解模型的内部工作机制C.为了追求高精度,模型的可解释性可以被牺牲D.可解释性有助于发现模型可能存在的偏差和错误11、在人工智能的强化学习中,假设智能体在探索环境时面临高风险的动作选择,以下哪种策略能够平衡探索和利用,以实现更好的学习效果?()A.ε-贪心策略,以一定概率随机选择动作B.始终选择最优动作,不进行探索C.随机选择动作,不考虑之前的经验D.只在初始阶段进行探索,之后完全利用12、人工智能中的生成对抗网络(GAN)在图像生成和数据增强等方面表现出色。假设要使用GAN生成逼真的人脸图像,以下关于GAN的描述,正确的是:()A.GAN的训练过程非常稳定,不会出现模式崩溃等问题B.生成器和判别器的能力不需要平衡,只要其中一个强大就能生成好的图像C.GAN可以通过不断的对抗训练,学习到真实数据的分布,从而生成逼真的新样本D.GAN只能用于图像生成,不能应用于其他领域的数据生成13、在一个利用人工智能进行能源管理的系统中,例如优化建筑物的能源消耗或电网的调度,以下哪个方面的考虑可能是至关重要的?()A.实时数据采集和处理B.精准的预测模型C.多目标优化策略D.以上都是14、深度学习模型在图像识别任务中取得了显著的成果。假设要训练一个深度卷积神经网络来识别不同种类的动物,以下关于模型训练的描述,正确的是:()A.增加网络的层数一定能提高模型的识别准确率,层数越多越好B.训练数据的数量和质量对模型的性能影响不大,关键在于网络结构的设计C.模型在训练集上的准确率很高,但在测试集上的准确率很低,可能是出现了过拟合现象D.深度学习模型不需要进行调参和优化,直接使用默认参数就能得到较好的结果15、人工智能中的弱人工智能和强人工智能是两个不同的概念。假设我们在讨论人工智能的发展阶段,以下关于弱人工智能和强人工智能的描述,哪一项是正确的?()A.弱人工智能已经能够像人类一样思考和创造B.强人工智能目前已经广泛应用于各个领域C.弱人工智能只能完成特定的任务,不具备通用性D.区分弱人工智能和强人工智能的关键在于计算能力二、简答题(本大题共4个小题,共20分)1、(本题5分)解释逻辑回归在分类问题中的应用。2、(本题5分)谈谈人工智能在决策支持系统中的角色。3、(本题5分)简述人工智能在智能人力资源需求预测中的技术。4、(本题5分)解释人工智能在市场竞争情报收集和分析中的作用。三、操作题(本大题共5个小题,共25分)1、(本题5分)使用Python的PyTorch框架,构建一个多层双向GRU模型,用于情感分析任务,比较不同层数和方向对性能的影响。2、(本题5分)利用Python的PyTorch库,构建一个变分自编码器(VAE)模型,对音乐旋律数据进行生成和潜在空间的探索。分析生成的音乐旋律的创新性和合理性。3、(本题5分)在Python中,运用混合整数规划求解一个资源分配问题。定义目标函数和约束条件,展示求解结果。4、(本题5分)使用深度学习框架构建一个卷积神经网络,对CIFAR-10图像数据集进行分类训练,观察模型的准确率和收敛情况。5、(本题5分)利用Python中的OpenCV库,实现对视频中的火焰检测和预警,及时发现火灾隐患。四、案例分析题(本大题共4个小题,共40分)1、(本题10分)分析一个基于人工智

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论