版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉化第一高级中学2025届高考数学一模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则()A.,b为任意非零实数 B.,a为任意非零实数C.a、b均为任意实数 D.不存在满足条件的实数a,b2.一个频率分布表(样本容量为)不小心被损坏了一部分,只记得样本中数据在上的频率为,则估计样本在、内的数据个数共有()A. B. C. D.3.两圆和相外切,且,则的最大值为()A. B.9 C. D.14.设(是虚数单位),则()A. B.1 C.2 D.5.已知三棱柱()A. B. C. D.6.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则()A. B. C.1 D.7.等比数列若则()A.±6 B.6 C.-6 D.8.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“-”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.159.如果直线与圆相交,则点与圆C的位置关系是()A.点M在圆C上 B.点M在圆C外C.点M在圆C内 D.上述三种情况都有可能10.若实数满足的约束条件,则的取值范围是()A. B. C. D.11.马林●梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p﹣1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P﹣1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是()A.3 B.4 C.5 D.612.在平面直角坐标系中,将点绕原点逆时针旋转到点,设直线与轴正半轴所成的最小正角为,则等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.各项均为正数的等比数列中,为其前项和,若,且,则公比的值为_____.14.已知函数在处的切线与直线平行,则为________.15.在长方体中,,则异面直线与所成角的余弦值为()A. B. C. D.16.在中,已知,则的最小值是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线?(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.18.(12分)已知,,不等式恒成立.(1)求证:(2)求证:.19.(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)若射线的极坐标方程为().设与相交于点,与相交于点,求.20.(12分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)①建立月总成本与月产量之间的回归方程;②通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:,,,,.②参考公式:相关系数,,.21.(12分)试求曲线y=sinx在矩阵MN变换下的函数解析式,其中M,N.22.(10分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如表:AQI空气质量优良轻度污染中度污染重度污染重度污染天数61418272510(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;(ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.【详解】依题意,在点处的切线与直线AB平行,即有,所以,由于对任意上式都成立,可得,为非零实数.故选:A【点睛】本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题.2、B【解析】
计算出样本在的数据个数,再减去样本在的数据个数即可得出结果.【详解】由题意可知,样本在的数据个数为,样本在的数据个数为,因此,样本在、内的数据个数为.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.3、A【解析】
由两圆相外切,得出,结合二次函数的性质,即可得出答案.【详解】因为两圆和相外切所以,即当时,取最大值故选:A【点睛】本题主要考查了由圆与圆的位置关系求参数,属于中档题.4、A【解析】
先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出.【详解】∵,∴.故选:A.【点睛】本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,属于容易题.5、C【解析】因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=6、D【解析】
根据以直角边为直径的半圆的面积之比求得,即的值,由此求得和的值,进而求得所求表达式的值.【详解】由于直角边为直径的半圆的面积之比为,所以,即,所以,所以.故选:D【点睛】本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题.7、B【解析】
根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.8、B【解析】
由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.【详解】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为1×20+1×24=1.故选:B.【点睛】本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.9、B【解析】
根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【详解】直线与圆相交,圆心到直线的距离,即.也就是点到圆的圆心的距离大于半径.即点与圆的位置关系是点在圆外.故选:【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题.10、B【解析】
根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.【详解】实数满足的约束条件,画出可行域如下图所示:将线性目标函数化为,则将平移,平移后结合图像可知,当经过原点时截距最小,;当经过时,截距最大值,,所以线性目标函数的取值范围为,故选:B.【点睛】本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.11、C【解析】
模拟程序的运行即可求出答案.【详解】解:模拟程序的运行,可得:p=1,S=1,输出S的值为1,满足条件p≤7,执行循环体,p=3,S=7,输出S的值为7,满足条件p≤7,执行循环体,p=5,S=31,输出S的值为31,满足条件p≤7,执行循环体,p=7,S=127,输出S的值为127,满足条件p≤7,执行循环体,p=9,S=511,输出S的值为511,此时,不满足条件p≤7,退出循环,结束,故若执行如图所示的程序框图,则输出的梅森素数的个数是5,故选:C.【点睛】本题主要考查程序框图,属于基础题.12、A【解析】
设直线直线与轴正半轴所成的最小正角为,由任意角的三角函数的定义可以求得的值,依题有,则,利用诱导公式即可得到答案.【详解】如图,设直线直线与轴正半轴所成的最小正角为因为点在角的终边上,所以依题有,则,所以,故选:A【点睛】本题考查三角函数的定义及诱导公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
将已知由前n项和定义整理为,再由等比数列性质求得公比,最后由数列各项均为正数,舍根得解.【详解】因为即又等比数列各项均为正数,故故答案为:【点睛】本题考查在等比数列中由前n项和关系求公比,属于基础题.14、【解析】
根据题意得出,由此可得出实数的值.【详解】,,直线的斜率为,由于函数在处的切线与直线平行,则.故答案为:.【点睛】本题考查利用函数的切线与直线平行求参数,解题时要结合两直线的位置关系得出两直线斜率之间的关系,考查计算能力,属于基础题.15、C【解析】
根据确定是异面直线与所成的角,利用余弦定理计算得到答案.【详解】由题意可得.因为,所以是异面直线与所成的角,记为,故.故选:.【点睛】本题考查了异面直线夹角,意在考查学生的空间想象能力和计算能力.16、【解析】分析:可先用向量的数量积公式将原式变形为:,然后再结合余弦定理整理为,再由cosC的余弦定理得到a,b的关系式,最后利用基本不等式求解即可.详解:已知,可得,将角A,B,C的余弦定理代入得,由,当a=b时取到等号,故cosC的最小值为.点睛:考查向量的数量积、余弦定理、基本不等式的综合运用,能正确转化是解题关键.属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),抛物线;(2)存在,.【解析】
(1)设,易得,化简即得;(2)利用导数几何意义可得,要使,只需.联立直线m与抛物线方程,利用根与系数的关系即可解决.【详解】(1)设,由题意,得,化简得,所以动圆圆心Q的轨迹方程为,它是以F为焦点,以直线l为准线的抛物线.(2)不妨设.因为,所以,从而直线PA的斜率为,解得,即,又,所以轴.要使,只需.设直线m的方程为,代入并整理,得.首先,,解得或.其次,设,,则,..故存在直线m,使得,此时直线m的斜率的取值范围为.【点睛】本题考查直线与抛物线位置关系的应用,涉及抛物线中的存在性问题,考查学生的计算能力,是一道中档题.18、(1)证明见解析(2)证明见解析【解析】
(1)先根据绝对值不等式求得的最大值,从而得到,再利用基本不等式进行证明;(2)利用基本不等式变形得,两边开平方得到新的不等式,利用同理可得另外两个不等式,再进行不等式相加,即可得答案.【详解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即两边开平方得.同理可得,.三式相加,得.【点睛】本题考查绝对值不等式、应用基本不等式证明不等式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和推理论证能力.19、(1)曲线的普通方程为;直线的直角坐标方程为(2)【解析】
(1)利用消去参数,将曲线的参数方程化成普通方程,利用互化公式,将直线的极坐标方程化为直角坐标方程;(2)根据(1)求出曲线的极坐标方程,分别联立射线与曲线以及射线与直线的极坐标方程,求出和,即可求出.【详解】解:(1)因为(为参数),所以消去参数,得,所以曲线的普通方程为.因为所以直线的直角坐标方程为.(2)曲线的极坐标方程为.设的极径分别为和,将()代入,解得,将()代入,解得.故.【点睛】本题考查利用消参法将参数方程化成普通方程以及利用互化公式将极坐标方程化为直角坐标方程,还考查极径的运用和两点间距离,属于中档题.20、(1)见解析;(2)①②3.386(万元)【解析】
(1)利用代入数值,求出后即可得解;(2)①计算出、后,利用求出后即可得解;②把代入线性回归方程,计算即可得解.【详解】(1)由已知条件得,,∴,说明与正相关,且相关性很强.(2)①由已知求得,,所以,所求回归直线方程为.②当时,(万元),此时产品的总成本约为3.386万元.【点睛】本题考查了相关系数的应用以及线性回归方程的求解和应用,考查了计算能力,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件共同使用合同范例
- 火车清洗设备合同范例
- 2024年版:基于人工智能的智能安防系统研发与销售合同
- 2024年混凝土浇筑工程分包合同
- 2024年某创业公司与投资方关于股权投资的合同
- 2024年度苗圃土地承包与园艺设施租赁合同3篇
- 条件性合同范例
- 学员培训业务合同范例
- 石龙有机蔬菜配送合同范例
- 熟食合作协议合同范例
- 环境工程的课程设计---填料吸收塔
- 道路运输达标车辆客车货车核查记录表
- 儿童诗儿童诗的欣赏和创作(课件)
- 人力资源管理工作思路(共3页)
- 五笔常用字根表3746
- 新生儿肺气漏
- 气管切开(一次性气切导管)护理评分标准
- 保安工作日志表
- 姜太公钓鱼的历史故事
- 数控车床实训图纸国际象棋图纸全套
- 电子政务概论教案
评论
0/150
提交评论