2025届浙江省两校高三3月份第一次模拟考试数学试卷含解析_第1页
2025届浙江省两校高三3月份第一次模拟考试数学试卷含解析_第2页
2025届浙江省两校高三3月份第一次模拟考试数学试卷含解析_第3页
2025届浙江省两校高三3月份第一次模拟考试数学试卷含解析_第4页
2025届浙江省两校高三3月份第一次模拟考试数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省两校高三3月份第一次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在上单调递减,且是偶函数,若,则的取值范围是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)2.已知过点且与曲线相切的直线的条数有().A.0 B.1 C.2 D.33.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则()A.170 B.10 C.172 D.124.复数满足,则()A. B. C. D.5.已知函数为奇函数,且,则()A.2 B.5 C.1 D.36.设,则A. B. C. D.7.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8.的展开式中的系数为()A.5 B.10 C.20 D.309.已知等比数列满足,,等差数列中,为数列的前项和,则()A.36 B.72 C. D.10.若,则的值为()A. B. C. D.11.在长方体中,,则直线与平面所成角的余弦值为()A. B. C. D.12.已知复数在复平面内对应的点的坐标为,则下列结论正确的是()A. B.复数的共轭复数是C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若,则实数的取值范围为__________.14.不等式对于定义域内的任意恒成立,则的取值范围为__________.15.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为,中位数为n,则_________.16.设满足约束条件,则目标函数的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)三棱柱中,平面平面,,点为棱的中点,点为线段上的动点.(1)求证:;(2)若直线与平面所成角为,求二面角的正切值.18.(12分)已知函数.(1)讨论的单调性;(2)若函数在上存在两个极值点,,且,证明.19.(12分)己知,,.(1)求证:;(2)若,求证:.20.(12分)已知变换将平面上的点,分别变换为点,.设变换对应的矩阵为.(1)求矩阵;(2)求矩阵的特征值.21.(12分)已知点到抛物线C:y1=1px准线的距离为1.(Ⅰ)求C的方程及焦点F的坐标;(Ⅱ)设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB,分别交x轴于M,N两点,求的值.22.(10分)如图,在四棱锥中,平面,四边形为正方形,点为线段上的点,过三点的平面与交于点.将①,②,③中的两个补充到已知条件中,解答下列问题:(1)求平面将四棱锥分成两部分的体积比;(2)求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【详解】根据题意,函数满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.【点睛】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。2、C【解析】

设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程.【详解】若直线与曲线切于点,则,又∵,∴,∴,解得,,∴过点与曲线相切的直线方程为或,故选C.【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.3、D【解析】

中位数指一串数据按从小(大)到大(小)排列后,处在最中间的那个数,平均数指一串数据的算术平均数.【详解】由茎叶图知,甲的中位数为,故;乙的平均数为,解得,所以.故选:D.【点睛】本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.4、C【解析】

利用复数模与除法运算即可得到结果.【详解】解:,故选:C【点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.5、B【解析】

由函数为奇函数,则有,代入已知即可求得.【详解】.故选:.【点睛】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.6、C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.7、A【解析】

利用已知条件画出几何体的直观图,然后求解几何体的体积.【详解】几何体的三视图的直观图如图所示,则该几何体的体积为:.故选:.【点睛】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键.8、C【解析】

由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成.【详解】由已知,,因为展开式的通项为,所以展开式中的系数为.故选:C.【点睛】本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题.9、A【解析】

根据是与的等比中项,可求得,再利用等差数列求和公式即可得到.【详解】等比数列满足,,所以,又,所以,由等差数列的性质可得.故选:A【点睛】本题主要考查的是等比数列的性质,考查等差数列的求和公式,考查学生的计算能力,是中档题.10、C【解析】

根据,再根据二项式的通项公式进行求解即可.【详解】因为,所以二项式的展开式的通项公式为:,令,所以,因此有.故选:C【点睛】本题考查了二项式定理的应用,考查了二项式展开式通项公式的应用,考查了数学运算能力11、C【解析】

在长方体中,得与平面交于,过做于,可证平面,可得为所求解的角,解,即可求出结论.【详解】在长方体中,平面即为平面,过做于,平面,平面,平面,为与平面所成角,在,,直线与平面所成角的余弦值为.故选:C.【点睛】本题考查直线与平面所成的角,定义法求空间角要体现“做”“证”“算”,三步骤缺一不可,属于基础题.12、D【解析】

首先求得,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项.【详解】由题意知复数,则,所以A选项不正确;复数的共轭复数是,所以B选项不正确;,所以C选项不正确;,所以D选项正确.故选:D【点睛】本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

画图分析可得函数是偶函数,且在上单调递减,利用偶函数性质和单调性可解.【详解】作出函数的图如下所示,观察可知,函数为偶函数,且在上单调递增,在上单调递减,故,故实数的取值范围为.故答案为:【点睛】本题考查利用函数奇偶性及单调性解不等式.函数奇偶性的常用结论:(1)如果函数是偶函数,那么.(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.14、【解析】

根据题意,分离参数,转化为只对于内的任意恒成立,令,则只需在定义域内即可,利用放缩法,得出,化简后得出,即可得出的取值范围.【详解】解:已知对于定义域内的任意恒成立,即对于内的任意恒成立,令,则只需在定义域内即可,,,当时取等号,由可知,,当时取等号,,当有解时,令,则,在上单调递增,又,,使得,,则,所以的取值范围为.故答案为:.【点睛】本题考查利用导数研究函数单调性和最值,解决恒成立问题求参数值,涉及分离参数法和放缩法,考查转化能力和计算能力.15、360【解析】

先计算第一块小矩形的面积,第二块小矩形的面积,,面积和超过0.5,所以中位数在第二块求解,然后再求得平均数作差即可.【详解】第一块小矩形的面积,第二块小矩形的面积,故;而,故.故答案为:360.【点睛】本题考查频率分布直方图、样本的数字特征,考查运算求解能力以及数形结合思想,属于基础题.16、【解析】

根据满足约束条件,画出可行域,将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点,此时,目标函数取得最小值.【详解】由满足约束条件,画出可行域如图所示阴影部分:将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点此时,目标函数取得最小值,最小值为故答案为:-1【点睛】本题主要考查线性规划求最值,还考查了数形结合的思想方法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】

(1)可证面,从而可得.(2)可证点为线段的三等分点,再过作于,过作,垂足为,则为二面角的平面角,利用解直角三角形的方法可求.也可以建立如图所示的空间直角坐标系,利用两个平面的法向量来计算二面角的平面角的余弦值,最后利用同角三角函数的基本关系式可求.【详解】证明:(1)因为为中点,所以.因为平面平面,平面平面,平面,所以平面,而平面,故,又因为,所以,则,又,故面,又面,所以.(2)由(1)可得:面在面内的射影为,则为直线与平面所成的角,即.因为,所以,所以,所以,即点为线段的三等分点.解法一:过作于,则平面,所以,过作,垂足为,则为二面角的平面角,因为,,,则在中,有,所以二面角的平面角的正切值为.解法二:以点为原点,建立如图所示的空间直角坐标系,则,设点,由得:,即,,,点,平面的一个法向量,又,,设平面的一个法向量为,则,令,则平面的一个法向量为.设二面角的平面角为,则,即,所以二面角的正切值为.【点睛】线线垂直的判定可由线面垂直得到,也可以由两条线所成的角为得到,而线面垂直又可以由面面垂直得到,解题中注意三种垂直关系的转化.空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.18、(1)若,则在定义域内递增;若,则在上单调递增,在上单调递减(2)证明见解析【解析】

(1),分,讨论即可;(2)由题可得到,故只需证,,即,采用换元法,转化为函数的最值问题来处理.【详解】由已知,,若,则在定义域内递增;若,则在上单调递增,在上单调递减.(2)由题意,对求导可得从而,是的两个变号零点,因此下证:,即证令,即证:,对求导可得,,,因为故,所以在上单调递减,而,从而所以在单调递增,所以,即于是【点睛】本题考查利用导数研究函数的单调性以及证明不等式,考查学生逻辑推理能力、转化与化归能力,是一道有一定难度的压轴题.19、(1)证明见解析(2)证明见解析【解析】

(1)采用分析法论证,要证,分式化整式为,再利用立方和公式转化为,再作差提取公因式论证.(2)由基本不等式得,再用不等式的基本性质论证.【详解】(1)要证,即证,即证,即证,即证,即证,该式显然成立,当且仅当时等号成立,故.(2)由基本不等式得,,当且仅当时等号成立.将上面四式相加,可得,即.【点睛】本题考查证明不等式的方法、基本不等式,还考查推理论证能力以及化归与转化思想,属于中档题..20、(1)(2)1或6【解析】

(1)设,根据变换可得关于的方程,解方程即可得到答案;(2)求出特征多项式,再解方程,即可得答案;【详解】(1)设,则,,即,解得,则.(2)设矩阵的特征多项式为,可得,令,可得或.【点睛】本题考查矩阵的求解、矩阵的特征值,考查函数与方程思想、转化与化归思想,考查运算求解能力.21、(Ⅰ)C的方程为,焦点F的坐标为(1,0);(Ⅱ)1【解析】

(Ⅰ)根据抛物线定义求出p,即可求C的方程及焦点F的坐标;

(Ⅱ)设点A(x1,y1),B(x1,y1),由已知得Q(−1,−1),由题意直线AB斜率存在且不为0,设直线AB的方程为y=k(x+1)−1(k≠0),与抛物线联立可得ky1-4y+4k-8=0,利用韦达定理以及弦长公式,转化求解|MF|•|NF|的值.【详解】(Ⅰ)由已知得,所以p=1.所以抛物线C的方程为,焦点F的坐标为(1,0);(II)设点A(x1,y1),B(x1,y1),由已知得Q(−1,−1),由题意直线AB斜率存在且不为0.设直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论