专题2.2 一元二次方程的解法【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)_第1页
专题2.2 一元二次方程的解法【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)_第2页
专题2.2 一元二次方程的解法【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)_第3页
专题2.2 一元二次方程的解法【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)_第4页
专题2.2 一元二次方程的解法【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE1专题2.2一元二次方程的解法【十大题型】【北师大版】TOC\o"1-3"\h\u【题型1直接开平方法解一元二次方程】 1【题型2配方法解一元二次方程】 4【题型3公式法解一元二次方程】 6【题型4因式分解法解一元二次方程】 8【题型5十字相乘法解一元二次方程】 11【题型6用适当方法解一元二次方程】 14【题型7用指定方法解一元二次方程】 18【题型8用换元法解一元二次方程】 23【题型9解含绝对值的一元二次方程】 24【题型10配方法的应用】 27知识点1:直接开平方法解一元二次方程根据平方根的意义直接开平方来解一元二次方程的方法,叫做直接开平方法.直接降次解一元二次方程的步骤:①将方程化为x2=p(p≥②直接开平方化为两个一元一次方程;③解两个一元一次方程得到原方程的解.【题型1直接开平方法解一元二次方程】【例1】(23-24九年级上·广东深圳·期中)将方程(2x-1)2=9的两边同时开平方,得2x-1=,即2x-1=或2x-1=,所以x1=,x2【答案】±33-32-1【分析】依照直接开平方法解一元二次方程的方法及步骤,一步步解出方程即可【详解】∵(2x-1)∴2x-1=±3∴2x-1=3,2x-1=-3∴x1=2,【点睛】此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键【变式1-1】(23-24九年级上·贵州遵义·阶段练习)用直接开平方解下列一元二次方程,其中无解的方程为(

)A.x2+9=0 B.-2x2=0 C.x2-3=0 D.(x-2)2=0【答案】A【分析】根据负数没有平方根即可求出答案.【详解】解:(A)移项可得x2(B)−2x2=0(C)移项可得x2(D)x−22故选A.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.【变式1-2】(23-24九年级上·陕西渭南·阶段练习)如果关于x的一元二次方程x−52=m−7可以用直接开平方求解,则m的取值范围是【答案】m≥7【分析】根据平方的非负性得出不等式,求出不等式的解集即可.【详解】解:∵方程x−52∴m−7≥0,解得:m≥7,故答案为:m≥7.【点睛】本题考查了解一元二次方程和解一元一次不等式,能得出关于m的不程是解此题的关键.【变式1-3】(23-24九年级上·河南南阳·阶段练习)小明在解一元二次方程时,发现有这样一种解法:如:解方程xx+4解:原方程可变形,得:x+2−2x+2+2=6.x+22−2我们称小明这种解法为“平均数法”(1)下面是小明用“平均数法”解方程x+5x+9解:原方程可变形,得:x+a−bx+a+b=5.x+a2−b上述过程中的a、b、c、d表示的数分别为______,______,______,______.(2)请用“平均数法”解方程:x−5x+7【答案】(1)7,2,−4,−10.(2)x1=−1+43【分析】(1)仿照平均数法可把原方程化为x+7−2x+7+2(2)仿照平均数法可把原方程化为x+1−6x+1+6【详解】(1)解:∵x+5x+9∴x+7−2∴x+72∴x+72∴x+7=3或x+7=−3,解得:x1=−4,∴上述过程中的a、b、c、d表示的数分别为7,2,−4,−10.(2)∵x−5x+7∴x+1−6∴x+12∴x+12∴x+1=43,x+1=−4解得:x1=−1+43【点睛】本题考查的是一元二次方程的解法,新定义运算的含义,理解平均数法结合直接开平方法解一元二次方程是解本题的关键.知识点2配方法解一元二次方程将一元二次方程配成(x+m)2用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.【题型2配方法解一元二次方程】【例2】(23-24九年级上·广东深圳·期中)用配方法解方程,补全解答过程.3x解:两边同除以3,得______________________________.移项,得x2配方,得_________________________________,即(x−1两边开平方,得__________________,即x−112=所以x1=1,【答案】x2−56【分析】方程两边除以3把二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【详解】3x解:两边同除以3,得x2移项,得x2配方,得x2即(x−1两边开平方,得x−1即x−112=所以x1=1,【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.【变式2-1】(23-24九年级下·广西百色·期中)用配方法解方程x2−6x−1=0时,配方结果正确的是(A.x−32=9 B.x−32=10 C.【答案】B【分析】此题考查了配方法求解一元二次方程,解题的关键是掌握配方法求解一元二次方程的步骤.根据配方法的步骤,求解即可.【详解】解:x移项得:x配方得:x即x−3故选:B【变式2-2】(24-25九年级上·全国·假期作业)用配方法解方程:x2【答案】x1=−m+【分析】本题考查了解一元二次方程——配方法.先移项,再进行配方,最后开方即可得.【详解】解:移项得x2配方得x2+2mx+m所以原方程的解为:x1=−m+2【变式2-3】(2024·贵州黔东南·一模)下面是小明用配方法解一元二次方程2x解:移项,得2x2二次项系数化为1,得x2+2x=4配方,得x+22=8由此可得x+2=±22所以,x1=−2+2①小明同学的解答过程,从第步开始出现错误;②请写出你认为正确的解答过程.【答案】①第三步;②详见解析【分析】本题主要考查了解一元二次方程,熟练掌握配方法,先将方程2x2+4x−8=0变为x【详解】解:①小明同学的解答过程,从第三步开始出现错误;②2x移项,得2x二次项系数化为1,得x2配方,得x+12由此可得x+1=±5所以,x1知识点3公式法解一元二次方程当b2−4ac≥0时,方程式子叫做一元二次方程ax2一元二次方程的方法叫做公式法.【题型3公式法解一元二次方程】【例3】(23-24九年级上·山西大同·阶段练习)用公式法解关于x的一元二次方程,得x=−6±62【答案】4【分析】根据公式法的公式x=−b±【详解】解:∵x=−b±∴a=4,b=6,c=1,从而得到一元二次方程为4x故答案为:4x【点睛】本题考查了用公式法解一元二次方程,熟记公式是解题的关键.【变式3-1】(23-24九年级上·广东深圳·期中)用公式法解一元二次方程:x−23x−5

解:方程化为3xa=3,b=,c=10.Δ=b2方程实数根.x==,即x1=,【答案】−11(−11)2有两个不相等的−−11±【分析】根据公式法解一元二次方程的解法步骤求解即.【详解】解:方程化为3xa=3,b=−11,c=10.Δ=b2方程有两个不相等的实数根.x=−−11±12×3即x1=2,故答案为:−11;(−11)2;有两个不相等的;−−11±【点睛】本题考查公式法解一元二次方程,熟练掌握公式法解一元二次方程的解法步骤是解答的关键.【变式3-2】(23-24九年级上·河南三门峡·期中)用公式法解方程−ax2+bx−c=0A.x=−b±b2C.x=b±b2【答案】B【分析】先将方程进行化简,然后根据一元二次方程的求根公式,即可做出判断.【详解】解:方程−ax2由求根公式可得:x=故选:B【点睛】本题主要考查了一元二次方程的求根公式,准确的识记求根公式是解答本题的关键.【变式3-3】(23-24九年级上·广东深圳·期中)用求根公式法解得某方程ax2+bx+c=0(a≠0)A.b=0 B.c=0 C.b2−4ac=0 【答案】A【分析】根据求根公式法求得一元二次方程的两个根x1、x2,由题意得x【详解】∵方程ax∴Δ=b2−4ac⩾0求根公式得到方程的根为x=−b±所以x1+x2=0解得b=0.故选:A.【点睛】本题考查了解一元二次方程-公式法,相反数的意义,熟练掌握用公式法解一元二次方程是解题的关键.知识点4因式分解法解一元二次方程当一个一元二次方程的一边是0,另一边能分解为两个一次因式的乘积时,就可以把解这样的一元二次方程转化为解两个一元一次方程,这种解一元二次方程的方法叫做因式分解法.【题型4因式分解法解一元二次方程】【例4】(23-24九年级下·安徽亳州·期中)关于x的一元二次方程xx−2=2−x的根是(A.−1 B.0 C.1和2 D.−1和2【答案】D【分析】本题主要考查了解一元二次方程,先移项,然后利用因式分解法解方程即可得到答案.【详解】解:∵xx−2∴xx−2∴x+1x−2∴x+1=0或x−2=0,解得x=−1或x=2,故选:D.【变式4-1】(23-24九年级上·陕西榆林·阶段练习)以下是某同学解方程x2解:方程两边因式分解,得xx−3方程两边同除以x−3,得x=−2,②∴原方程的解为x=−2.③(1)上面的运算过程第______步出现了错误.(2)请你写出正确的解答过程.【答案】(1)②(2)过程见解析【分析】(1)根据等式的性质作答即可;(2)先移项,然后用因式分解法求解.【详解】(1)解:∵x−3可能为0,∴不能除以x−3,∴第②步出现了错误故答案为②.(2)解:方程两边因式分解,得xx−3移项,得xx−3∴x−3x+2∴x1=3,【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.【变式4-2】(23-24九年级下·安徽安庆·期中)对于实数m,n,定义运算“※”:m※n=m2−2n,例如:2※3=22A.都为10 B.都为0 C.0或10 D.5或−5【答案】C【分析】本题考查的知识点是新定义运算、解一元二次方程,解题关键是理解题意.现根据新定义运算得出一元二次方程,再求解即可.【详解】解:根据定义运算m※n=mx※5x=0即为x2即xx−10∴x1=0则方程的根为0或10.故选:C.【变式4-3】(13-14九年级·浙江·课后作业)利用因式分解求解方程(1)4y(2)(2x+3)(2x−3)−x(2x+3)=0.【答案】(1)y1=0,【分析】(1)利用移项、提公因式法因式分解求出方程的根;(2)利用提公因式法分解因式求出方程的根.【详解】(1)4y4y(4y−3)=0y=0或4y-3=0∴y1故答案为:y1(2)(2x+3)(2x−3)−x(2x+3)=0(2x+3)(x−3)=02x+3=0或x−3=0x1故答案为:x1【点睛】本题考查利用因式分解解方程,关键是防止丢掉方程的根.例如:解方程4y2=3y【题型5十字相乘法解一元二次方程】【例5】(23-24九年级下·广西百色·期中)以下是解一元二次方程ax2+bx+c=0(a≠0)的一种方法:二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1,a2,cA.(x−2)(6x+5)=0 B.(2x+2)(3x−5)=0C.(x−5)(6x+2)=0 D.(2x−5)(3x+2)=0【答案】D【分析】根据“十字相乘法”分解因式得出6x【详解】∵∴6x故选:D.【点睛】本题主要考查了利用因式分解法解一元二次方程以及十字相乘法分解因式,正确分解常数项是解题关键.【变式5-1】(23-24九年级上·江西上饶·期末)试用十字相乘法解下列方程(1)x2(2)x2【答案】(1)x1=−4,(2)x1=2,【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.(1)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,进一步求解可得答案;(2)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,进一步求解可得答案.【详解】(1)解:xx+4x+4=0或x+1=0∴x1=−4,(2)解:xx+5x+5=0或x−2=0∴x1=2,【变式5-2】(23-24九年级下·广西梧州·期中)解关于x的方程x2−7mx+12mA.x1=−3m,x2=4m C.x1=−3m,x2=−4m 【答案】B【分析】本题主要考查了解一元二次方程,掌握运用十字相乘法求解即可.直接运用十字相乘法解一元二次方程即可.【详解】解:x2x−3mx−4mx−3m=0或x−4m=0,x1=3m,故选B.【变式5-3】(23-24九年级下·重庆·期中)阅读下面材料:材料一:分解因式是将一个多项式化为若干个整式积的形式的变形,“十字相乘法”可把某些二次三项式分解为两个一次式的乘积,具体做法如下:对关于x,y的二次三项式ax2+bxy+cy2,如图1,将x2项系数a=a1⋅a2,作为第一列,y2示例1:分解因式:x解:如图2,其中1=1×1,6=2×3,而5=1×3+1×2;∴x2示例2:分解因式:x2解:如图3,其中1=1×1,−12=−6×2,而−4=1×2+1×(−6);∴x2材料二:关于x,y的二次多项式ax2+bxy+cy2+dx+ey+f也可以用“十字相乘法”分解为两个一次式的乘积.如图4,将a=a1a2作为一列,c=c

示例3:分解因式:x2解:如图5,其中1=1×1,3=(−1)×(−3),−3=(−3)×1;满足−4=1×(−3)+1×(−1),−2=1×(−3)+1×1,8=(−3)×(−3)+(−1)×1;∴x请根据上述材料,完成下列问题:(1)分解因式:x2+3x+2=;x(2)若x,y,m均为整数,且关于x,y的二次多项式x2+xy−6y2−2x+my−120可用“十字相乘法”分解为两个一次式的乘积,求出m的值,并求出关于x【答案】(1)(x+1)(x+2),(x−3y+5)(x−2y−4);(2)m=54m=−56,x=−1y=4【分析】(1)①直接用十字相乘法分解因式;②把某个字母看成常数用十字相乘法分解即可;(2)用十字相乘法把能分解的集中情况全部列出求出m值.【详解】解:(1)①1=1×1,2=1×2,3=1×1+1×2,∴原式=(x+1)(x+2);②1=1×1,6=(-2)×(-3),-20=5×(-4)满足(-5)=1×(-2)+1×(-3),1=1×5+1×(-4),2=(-2)×5+(-3)×(-4)∴原式=(x−3y+5)(x−2y−4);(2)①1−35②1−21013(x−2y+10)(x+3y−12)=∴m=54(x−2y−12)(x+3y+10)=∴m=−56当m=54时,(x−2y+10)(x+3y−12)=−1{x−2y+10=1x+3y−12=−1或{x−2y+10=−1x+3y−12=1当m=−56时,(x−2y−12)(x+3y+10)=−1{x−2y−12=1x+3y+10=−1或{x−2y=12=1x+3y+10=1,综上所述,方程x2+xy−6y2−2x+my−120=−1方法二:x=(x+3y+a)(x−2y+b)=(x+3y)(x−2y)+(a+b)x+(3b−2a)y+ab{a+b=−23b−2a=mab=−120【点睛】本题考查了因式分解的方法——十字相乘法,弄清题目中的十字相乘的方法是解题关键.【题型6用适当方法解一元二次方程】【例6】(23-24九年级上·江苏宿迁·期末)用适当的方法解下列方程:(1)x2(2)x−32(3)2x(4)x−1x+2【答案】(1)x1=4(2)x1=5(3)x1=(4)x1=−2【分析】本题考查了一元二次方程的解法,解一元二次方程-因式分解法,公式法,熟练掌握解一元二次方程的方法是解题的关键.(1)利用解一元二次方程-因式分解法进行计算,即可解答;(2)利用解一元二次方程-因式分解法进行计算,即可解答;(3)利用解一元二次方程-公式法进行计算,即可解答;(4)利用解一元二次方程-因式分解法进行计算,即可解答.【详解】(1)解:xxx−4解得x1=4(2)解:x−3−2x−5x−1解得x1=5(3)解:∵a=2,b=−4,c=−5∴∴x=解得x1=(4)解:x−1x+2x−1−2x+2x−3∴x+2=0,x−3=0,解得x1=−2【变式6-1】(23-24九年级上·山西太原·期中)用适当的方法解下列一元二次方程:(1)x2(2)xx+3【答案】(1)x1=(2)x1=−3【分析】本题考查的是一元二次方程的解法,掌握配方法、因式分解法解一元二次方程的一般步骤是解题的关键.(1)利用配方法解方程;(2)先移项,再利用提公因式法解方程.【详解】(1)解:移项,得x2配方,得x2x+22两边开平方,得x+2=±6所以,x1=6(2)解:原方程可变形为:xx+3xx+3x+3x−5x+3=0或x−5=0,所以,x1=−3【变式6-2】(23-24九年级下·山东泰安·期末)用适当的方法解下列方程(1)3x(2)x+13x−1(3)4x2x+1(4)x2【答案】(1)x1=3(2)x1=(3)x1=−(4)x1=−3+【分析】(1)方程整理后,利用直接开平方法求解即可;(2)方程整理后,利用求根公式法求解即可;(3)方程利用因式分解法求解即可;(4)方程利用配方法求解即可.【详解】(1)解:方程整理得:x2开方得:x=±32解得:x1=32(2)解:方程整理得:3x这里a=3,b=2,c=−2,∵△=2∴x=−2±2解得:x1=−1+(3)解:方程移项得:4x(2x+1)−3(2x+1)=0,分解因式得:(2x+1)(4x−3)=0,所以2x+1=0或4x−3=0,解得:x1=−1(4)解:配方得:x2+6x+9=19,即开方得:x+3=±19解得:x1=−3+19【点睛】此题考查了解一元二次方程−因式分解法,公式法,直接开平方法,配方法,熟练掌握根据方程的特征选择恰当的解法是解本题的关键.【变式6-3】(23-24九年级上·海南省直辖县级单位·期末)用适当的方法解下列方程.(1)(x+2)(2)x2(3)2x【答案】(1)x1=3(2)x1=1(3)x1=【分析】(1)利用平方差公式,可以解答此方程;(2)利用因式分解法解方程即可;(3)利用因式分解法解方程即可.【详解】(1)解:(x+2)2(x+2−5)(x+2+5)=0,∴x−3=0或x+7=0,解得x1=3,(2)解:x2x−1x+5∴x−1=0或x+5=0,解得x1=1,(3)解:2x2x−1x−1∴2x−1=0或x−1=0,解得x1=1【点睛】本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).【题型7用指定方法解一元二次方程】【例7】(23-24九年级下·山东日照·期末)用指定的方法解下列方程:(1)4(x﹣1)2﹣36=0(直接开方法)(2)x2+2x﹣3=0(配方法)(3)(x+1)(x-2)=4(公式法)(4)2(x+1)﹣x(x+1)=0(因式分解法)【答案】(1)x1=4,x2=﹣2;(2)x1=1,x2=﹣3;(3)x1=3,x2=﹣2;(4)x1=﹣1,x2=2.【分析】(1)直接利用开方法进行求解即可得到答案;(2)直接利用配方法进行求解即可得到答案;(3)直接利用公式法进行求解即可得到答案;(4)直接利用因式分解法进行求解即可得到答案;【详解】解:(1)∵4∴(x﹣1)2=9,∴x﹣1=±3,∴x1=4,x2=﹣2;(2)∵x2+2x=3,∴x2+2x+1=4,∴(x+1)2=4,∴x+1=±2,∴x1=1,x2=﹣3;(3)∵x2﹣x﹣6=0,∴△=1﹣4×1×(﹣6)=25,∴x=1±25∴x1=3,x2=﹣2;(4)∵2∴(x+1)(2﹣x)=0,∴x+1=0或2﹣x=0,∴x1=﹣1,x2=2.【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.【变式7-1】(23-24九年级下·山东烟台·期中)用指定的方法解方程:(1)x2(2)3x(3)5x−3(4)2y【答案】(1)x1=(2)x(3)x(4)y【分析】本题考查了解一元二次方程,正确掌握相关性质内容是解题的关键.(1)运用配方法解方程,先移项再配方,然后开方即可作答.(2)先化为一般式,再根据Δ=b2(3)先移项,再提取公因式,令每个因式为0,进行解出x的值,即可作答.(4)先移项,再提取公因式,令每个因式为0,进行解出x的值,即可作答.【详解】(1)解:x移项,得x配方,得x2−4x+4=1+4∴x−2=±解得x1=5(2)解:33Δ∴x=解得x1(3)解:555x−3则x−3=0解得x1(4)解:222y2y−1∴2y−1=0解得y1【变式7-2】(23-24九年级上·新疆乌鲁木齐·期中)用指定的方法解方程:(1)12(2)x2(3)x−32(4)x+23x−1【答案】(1)x(2)x(3)x(4)x【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)利用因式分解法解方程即可;(4)先将给出的方程进行变形,然后利用因式分解法解方程即可.【详解】(1)移项,得:12系数化1,得:x2配方,得:x2(x−2)2x−2=±14∴x1=2+14(2)原方程可变形为x2a=1,b=−8,c=−20,Δ=(−8)∴x=−b±∴x1=10,(3)原方程可变形为:x−3x−3+4x整理得:x−35x−3解得x1=3,(4)原方程可变形为:3x整理得:3x3x−4x+3∴x1=−3【点睛】本题主要考查的是配方法,公式法,因式分解法解一元二次方程的有关知识,掌握配方法的基本步骤,一元二次方程的求根公式是解题关键.【变式7-3】(23-24九年级上·河北邯郸·期中)按指定的方法解下列方程:(1)x2(2)2y(3)x+22【答案】(1)x1=9,(2)x1=−3,(3)x1=−2,【分析】(1)先把方程化为x2−8x+16=25,可得(2)先计算△=7(3)先移项,再把方程左边分解因式可得x+2x−1【详解】(1)解:x2移项得:x2∴x2配方得:x−42∴x−4=5或x−4=−5,解得:x1=9,(2)解:2y∴△=7∴x=−7±∴x1=−3,(3)解:x+22移项得:x+22∴x+2x−1∴x+2=0或x−1=0,解得:x1=−2,【点睛】本题考查的是一元二次方程的解法,掌握“配方法,公式法,因式分解法解一元二次方程”是解本题的关键.【题型8用换元法解一元二次方程】【例8】(23-24九年级下·浙江杭州·期中)已知a2+b【答案】3【分析】先用换元法令a2+b【详解】解:令a2x(x+2)−15=0,解得:x1∵x>0,∴x=3,即a2a2【点睛】本题考查了换元法、一元二次方程的解法,注意a2【变式8-1】(23-24九年级下·安徽合肥·期中)关于x的方程x2+x2A.−3 B.1 C.−3或1 D.3或−1【答案】B【分析】本题考查解一元二次方程,熟练掌握用换元法解方程是解题的关键.设x2+x=t,则此方程可化为【详解】解:设x2+x=t,则此方程可化为∴t−1t+3∴t−1=0或t+3=0,解得t1=1,∴x2+x的值是1或∵x2+x=−3,即Δ方程无解,故x2∴x2故选:B.【变式8-2】(23-24九年级上·广东江门·期中)若a+5ba+5b+6=7,则a+5b=【答案】1或−7【分析】本题主要考查解一元二次方程,设a+5b=x,则原方程可变形为xx+6=7,方程变形后运用因式分解法求出【详解】解:设a+5b=x,则原方程可变形为xx+6整理得,x2x−1x+7x−1=0,x+7=0,∴x=1,x=−7,即a+5b=1或−7,故答案为:1或−7.【变式8-3】(23-24九年级上·山东临沂·期中)利用换元法解下列方程:(1)2x(2)(x【答案】(1)x1=(2)x1=1+172,【分析】(1)根据换元思想,设y=x2,则y=2或(2)设y=x2−x,则y=4【详解】(1)解:(1)设y=x2,则原方程化为∴y=2或y=−1当y=2时,x2∴x1=2当y=−12时,∴原方程的解是x1=2(2)解:设y=x2−x∴y=4或y=1,当y=4时,x2∴x1=1+当y=1时,x2∴x3=1+∴原方程的解是x1=1+172,x【点睛】本题主要考查换元思想解高次方程,掌握我一元二次方程的解法是解题的关键.【题型9解含绝对值的一元二次方程】【例9】(23-24九年级上·陕西榆林·阶段练习)阅读下面的材料,解答问题.材料:解含绝对值的方程:x2①当x≥0时,原方程化为x2−3x②当x<0时,原方程化为x2+3x综上所述,原方程的解是x1请参照上述方法解方程x2【答案】x【分析】根据题意分两种情况讨论,化简绝对值,然后解一元二次方程即可求解.【详解】解:分两种情况:①当x+1≥0,即x≥−1时,原方程化为x2②当x+1<0,即x<−1时,原方程化为x2+x综上所述,原方程的解是x1【点睛】本题考查了解一元二次方程,分类讨论是解题的关键.【变式9-1】(23-24九年级上·内蒙古赤峰·期中)解方程x2【答案】x1=0【分析】对x+2进行分类讨论,先把绝对值号化简后方程变形为一般的一元二次方程,再利用因式分解法解出方程的解,最后结合x的取值范围最终确定答案即可.【详解】解:①当x+2≥0,即x≥−2时,方程变形得:x∴x∴x(x+2)=0∴x1=0,②当x+2<0,即x<−2时,方程变形得:∴x∴(∴x1=−2(舍去),∴综上所述,原方程的解是x1=0或【点睛】本题考查了含绝对值的方程、一元二次方程的解法等知识,渗透了分类讨论的思想.【变式9-2】(23-24九年级下·安徽滁州·阶段练习)解方程x2【答案】x【分析】分x≥−32【详解】当2x+1≥0,即原方程可化为:x整理得:x解得:x当2x+1<0,即原方程可化为:x整理得x∵Δ=∴此方程无实数解,综上所述,原方程的解为:x【点睛】本题考查了解一元二次方程,分类讨论化简绝对值是解题的关键.【变式9-3】(23-24九年级上·山西太原·阶段练习)解方程x【答案】x1=【分析】根据题意分x-5≥0和x-5<0两种情况,分别解方程即可.【详解】解:①当x-5≥0时,即x≥5时,原方程化为x2−xa=1,∴Δ=b∴原方程无解,②当x-5<0时,即x<5时,原方程化为x2+xa=1,∴Δ=x解得:x1=−1+【点睛】此题考查了解含绝对值的一元二次方程,解题的关键是根据题意分两种情况讨论.【题型10配方法的应用】【例10】(23-24九年级上·河北沧州·期中)【项目学习】配方法是数学中重要的一种思想方法.它是指将一个式子的某部分通过恒等变形化为完全平方式或几个完全平方式的和的方法,这种方法常被用到代数式的变形中,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例:求代数式y2解:y2∵y+22≥0∴当y=−2时,y2(1)【类比探究】求代数式x2(2)【举一反三】若y=−x2−2x当x=(3)【灵活运用】已知x2−4x+y(4)【拓展应用】如图某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为15m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,栅栏的总长度为24m.当BF为多少时,矩形养殖场的总面积最大?最大值为多少?【答案】(1)3(2)−1;大;1(3)1(4)当BF=4m,矩形养殖场的总面积最大,最大值为48【分析】本题主要考查了配方法的应用,熟练掌握配方法是解题的关键:(1)把原式利用配方法变形为x−32(2)把原式利用配方法变形为−x+1(3)把原式利用配方法变形为x−22(4)设BF=xm,则CF=2BF=2xm,则BC=3xm,进而求出AB=【详解】(1)解:x==x−3∵x−32∴x−32∴当x=3时,x2(2)解:y=−=−=−x+1∵x+12∴−x+1∴−x+1∴当x=−1时,y=−x故答案为:−1;大;1;(3)解:∵x2∴x2∴x−22∵x−22∴x−22∴x−2=0,∴x=2,∴x+y=2−1=1;(4)解:设BF=xm,则CF=2BF=2x∴BC=3xm∴AB=24−3x∴S矩形=−3=−3x−4∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论