江西航空职业技术学院《书籍装帧与样本制作》2023-2024学年第一学期期末试卷_第1页
江西航空职业技术学院《书籍装帧与样本制作》2023-2024学年第一学期期末试卷_第2页
江西航空职业技术学院《书籍装帧与样本制作》2023-2024学年第一学期期末试卷_第3页
江西航空职业技术学院《书籍装帧与样本制作》2023-2024学年第一学期期末试卷_第4页
江西航空职业技术学院《书籍装帧与样本制作》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页江西航空职业技术学院《书籍装帧与样本制作》

2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉在无人驾驶飞行器(UAV)中的应用可以实现自主导航和环境感知。假设一个UAV需要在复杂的环境中飞行并避开障碍物。以下关于计算机视觉在UAV中的描述,哪一项是错误的?()A.可以通过视觉传感器获取周围环境的信息,包括地形、建筑物和其他障碍物B.能够实时分析图像,计算与障碍物的距离和相对速度,为飞行决策提供依据C.计算机视觉在UAV中的应用完全不需要与其他传感器(如惯性测量单元)的数据融合D.可以利用深度学习算法进行端到端的飞行控制,实现自主飞行2、在计算机视觉中,三维重建是从二维图像恢复物体的三维结构。以下关于三维重建的叙述,不正确的是()A.可以通过多视图几何、结构光或深度学习方法进行三维重建B.三维重建在虚拟现实、文物保护和工业设计等领域有着广泛的应用C.三维重建的结果总是精确无误的,能够完全还原物体的真实三维结构D.噪声、遮挡和图像质量等因素会对三维重建的结果产生影响3、视频理解是计算机视觉中的一个具有挑战性的任务。以下关于视频理解的叙述,不准确的是()A.视频理解不仅需要分析每一帧图像的内容,还需要考虑帧之间的时间关系B.循环神经网络(RNN)和长短期记忆网络(LSTM)在处理视频序列数据时具有优势C.视频理解在视频监控、行为分析和内容推荐等方面具有广泛的应用前景D.目前的视频理解技术已经能够完全理解复杂场景下的视频内容,不存在任何挑战4、在计算机视觉的图像分割任务中,需要将图像中的不同物体或区域准确地划分出来。假设要对一张包含多个水果的图像进行精确分割,每个水果的边界可能不清晰,且存在部分重叠和阴影。以下哪种图像分割算法在处理这种具有挑战性的情况时表现更为出色?()A.基于阈值的分割B.基于区域的分割C.基于边缘检测的分割D.基于深度学习的语义分割5、在计算机视觉的图像检索任务中,假设要从一个大型图像数据库中快速找到与给定图像相似的图像。以下关于图像检索方法的描述,正确的是:()A.基于文本标注的图像检索方法依赖于人工标注的准确性和完整性,检索效果不稳定B.基于内容的图像检索通过提取图像的特征进行相似性比较,但特征的选择对检索结果影响不大C.哈希方法能够将高维的图像特征映射为低维的哈希码,大大提高检索效率,但会损失一定的准确性D.所有的图像检索方法都能够在大规模数据库中实现实时、准确的检索6、在计算机视觉的图像去噪任务中,假设要去除一张受到严重噪声污染的图像中的噪声,同时尽可能保留图像的细节和边缘信息。以下哪种去噪方法可能更适合?()A.中值滤波,用邻域中值代替像素值B.均值滤波,用邻域平均值代替像素值C.基于深度学习的图像去噪模型,如DnCNND.不进行任何去噪处理,保留原始噪声图像7、计算机视觉在工业检测中的应用可以提高产品质量和生产效率。假设要检测生产线上的零件是否存在缺陷,以下关于工业检测中的计算机视觉应用的描述,哪一项是不正确的?()A.可以使用机器视觉系统对零件进行实时检测,快速发现缺陷B.深度学习模型能够自动学习正常零件和缺陷零件的特征差异,实现准确的缺陷检测C.工业检测中的计算机视觉系统需要具备高度的准确性和稳定性,能够适应不同的生产环境D.计算机视觉在工业检测中只能检测外观缺陷,对于零件的内部结构和性能无法进行评估8、计算机视觉中的视觉跟踪算法常用于跟踪运动目标。假设要跟踪一只在森林中奔跑的动物,以下关于视觉跟踪算法的描述,哪一项是不正确的?()A.基于模型的跟踪算法通过建立目标的模型来预测其位置和状态B.基于特征的跟踪算法依赖于目标的显著特征进行跟踪C.视觉跟踪算法在目标发生快速变形或完全遮挡时仍能保持准确跟踪D.结合多种线索和信息的融合跟踪算法可以提高跟踪的稳定性和可靠性9、在计算机视觉的三维重建任务中,假设要从一组二维图像恢复出物体的三维结构。以下关于三维重建方法的描述,正确的是:()A.基于立体视觉的方法需要多视角的图像,并且对相机的标定精度要求不高B.结构光方法能够快速准确地获取物体表面的三维信息,但对环境光敏感C.从运动中恢复结构(SfM)方法只适用于静态场景,无法处理动态物体D.所有的三维重建方法都能够生成高精度的、完整的物体三维模型10、对于图像分类任务,假设需要对大量的自然风景图像进行分类,包括山脉、森林、海滩和沙漠等场景。这些图像在光照、拍摄角度和季节等方面存在较大差异。为了提高图像分类的准确性和泛化能力,以下哪种策略是至关重要的?()A.增加数据增强操作,如旋转、翻转和颜色变换B.只使用少量具有代表性的图像进行训练C.选择简单的分类模型,避免过拟合D.不进行任何预处理,直接使用原始图像训练模型11、计算机视觉中的图像增强技术可以改善图像质量。假设要对一张低光照条件下拍摄的图像进行增强,以下关于图像增强方法的描述,正确的是:()A.简单地增加图像的亮度就能有效改善低光照图像的质量B.直方图均衡化方法总是能够在不引入噪声的情况下增强图像对比度C.基于深度学习的图像增强方法能够自适应地学习到适合的增强策略D.图像增强不会改变图像的原始信息和内容12、在计算机视觉的图像风格迁移任务中,假设要将一张照片转换为具有特定艺术风格的图像,以下哪种技术可能对生成逼真的风格效果起到关键作用?()A.对抗生成网络(GAN)B.自编码器(Autoencoder)C.变分自编码器(VAE)D.玻尔兹曼机(BoltzmannMachine)13、在计算机视觉中,图像增强技术用于改善图像的质量。以下关于图像增强的描述,不正确的是()A.图像增强可以包括对比度增强、锐化、去噪等操作B.图像增强的目的是使图像更适合人类视觉观察或后续的处理任务C.过度的图像增强可能会导致图像失真或引入噪声D.图像增强只对低质量的图像有效果,对于高质量的图像没有必要进行增强14、计算机视觉中的动作识别旨在识别视频中的人体动作。假设要对一段监控视频中的人员动作进行分类,以下关于动作识别方法的描述,正确的是:()A.基于手工特征和传统分类器的方法能够处理复杂的动作变化,准确率高B.深度学习中的循环神经网络(RNN)在动作识别中无法捕捉动作的时空特征C.3D卷积神经网络能够同时处理空间和时间维度的信息,适用于动作识别任务D.动作识别系统对视频的拍摄角度和背景变化不敏感,具有很强的通用性15、在计算机视觉的图像超分辨率重建中,提高低分辨率图像的清晰度。假设要将一张模糊的图像重建为清晰的高分辨率图像,以下关于图像超分辨率重建方法的描述,哪一项是不正确的?()A.基于插值的方法通过在像素之间插入新的值来增加图像的分辨率,但可能会导致图像模糊B.基于深度学习的方法能够学习低分辨率图像和高分辨率图像之间的映射关系,重建出更清晰的图像C.图像超分辨率重建可以无限制地提高图像的分辨率,不受原始图像信息的限制D.为了获得更好的重建效果,可以结合多种超分辨率重建方法或使用先验知识二、简答题(本大题共4个小题,共20分)1、(本题5分)说明计算机视觉在制鞋工业中的作用。2、(本题5分)说明计算机视觉在海洋监测中的应用。3、(本题5分)解释计算机视觉中形状描述子的作用和类型。4、(本题5分)解释计算机视觉在刑侦中的应用。三、应用题(本大题共5个小题,共25分)1、(本题5分)运用图像分类技术,对不同品种的花卉进行分类。2、(本题5分)设计一个程序,通过计算机视觉识别不同品牌的投影仪。3、(本题5分)利用图像分割技术,从超声波图像中分割出结石区域。4、(本题5分)设计一个程序,通过计算机视觉识别不同款式的领带。5、(本题5分)开发一个可以识别不同种类牛科动物的计算机视觉应用。四、分析题(本大题共4个小题,共40分)1、(本题10分)以一个电子产品品牌的产品说明书设计为例,分析其如何运用图形、文字等元素清晰地传达产品

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论