山东省莒南县大店中学2025届高三3月份第一次模拟考试数学试卷含解析_第1页
山东省莒南县大店中学2025届高三3月份第一次模拟考试数学试卷含解析_第2页
山东省莒南县大店中学2025届高三3月份第一次模拟考试数学试卷含解析_第3页
山东省莒南县大店中学2025届高三3月份第一次模拟考试数学试卷含解析_第4页
山东省莒南县大店中学2025届高三3月份第一次模拟考试数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省莒南县大店中学2025届高三3月份第一次模拟考试数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设等比数列的前项和为,若,则的值为()A. B. C. D.2.是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹为一段抛物线,则()A. B. C. D.3.在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,,那么()A. B. C. D.4.向量,,且,则()A. B. C. D.5.要得到函数的图象,只需将函数的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位6.已知函数为奇函数,且,则()A.2 B.5 C.1 D.37.设,则A. B. C. D.8.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是()A.8 B.9 C.10 D.119.已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是()A. B. C. D.10.已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点.若双曲线的离心率为2,三角形AOB的面积为,则p=().A.1 B. C.2 D.311.已知复数,若,则的值为()A.1 B. C. D.12.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为()A.②③ B.②③④ C.①④ D.①②③二、填空题:本题共4小题,每小题5分,共20分。13.(5分)已知,且,则的值是____________.14.已知集合,,则__________.15.棱长为的正四面体与正三棱锥的底面重合,若由它们构成的多面体的顶点均在一球的球面上,则正三棱锥的内切球半径为______.16.下图是一个算法的流程图,则输出的x的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,函数.(Ⅰ)判断函数的单调性;(Ⅱ)若时,对任意,不等式恒成立,求实数的最小值.18.(12分)为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;(3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为,求的分布列及期望.19.(12分)已知函数,设为的导数,.(1)求,;(2)猜想的表达式,并证明你的结论.20.(12分)已知函数.(1)讨论的单调性;(2)曲线在点处的切线斜率为.(i)求;(ii)若,求整数的最大值.21.(12分)我国在2018年社保又出新的好消息,之前流动就业人员跨地区就业后,社保转移接续的手续往往比较繁琐,费时费力.社保改革后将简化手续,深得流动就业人员的赞誉.某市社保局从2018年办理社保的人员中抽取300人,得到其办理手续所需时间(天)与人数的频数分布表:时间人数156090754515(1)若300名办理社保的人员中流动人员210人,非流动人员90人,若办理时间超过4天的人员里非流动人员有60人,请完成办理社保手续所需时间与是否流动人员的列联表,并判断是否有95%的把握认为“办理社保手续所需时间与是否流动人员”有关.列联表如下流动人员非流动人员总计办理社保手续所需时间不超过4天办理社保手续所需时间超过4天60总计21090300(2)为了改进工作作风,提高效率,从抽取的300人中办理时间为流动人员中利用分层抽样,抽取12名流动人员召开座谈会,其中3人要求交书面材料,3人中办理的时间为的人数为,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87922.(10分)已知函数,.(1)若函数在上单调递减,且函数在上单调递增,求实数的值;(2)求证:(,且).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

求得等比数列的公比,然后利用等比数列的求和公式可求得的值.【详解】设等比数列的公比为,,,,因此,.故选:C.【点睛】本题考查等比数列求和公式的应用,解答的关键就是求出等比数列的公比,考查计算能力,属于基础题.2、B【解析】

设正四面体的棱长为,建立空间直角坐标系,求出各点的坐标,求出面的法向量,设的坐标,求出向量,求出线面所成角的正弦值,再由角的范围,结合为定值,得出为定值,且的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值.【详解】由题意设四面体的棱长为,设为的中点,以为坐标原点,以为轴,以为轴,过垂直于面的直线为轴,建立如图所示的空间直角坐标系,则可得,,取的三等分点、如图,则,,,,所以、、、、,由题意设,,和都是等边三角形,为的中点,,,,平面,为平面的一个法向量,因为与平面所成角为定值,则,由题意可得,因为的轨迹为一段抛物线且为定值,则也为定值,,可得,此时,则,.故选:B.【点睛】考查线面所成的角的求法,及正切值为定值时的情况,属于中等题.3、D【解析】

由得,分别算出和的值,从而得到的值.【详解】∵,∴,∴,当时,,∴,当时,,∴,∴,故选:D.【点睛】本小题主要考查对数运算,属于基础题.4、D【解析】

根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解】故选:D【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.5、D【解析】

直接根据三角函数的图象平移规则得出正确的结论即可;【详解】解:函数,要得到函数的图象,只需将函数的图象向左平移个单位.故选:D.【点睛】本题考查三角函数图象平移的应用问题,属于基础题.6、B【解析】

由函数为奇函数,则有,代入已知即可求得.【详解】.故选:.【点睛】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.7、C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.8、B【解析】

根据题意计算,,,解不等式得到答案.【详解】∵是以1为首项,2为公差的等差数列,∴.∵是以1为首项,2为公比的等比数列,∴.∴.∵,∴,解得.则当时,的最大值是9.故选:.【点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.9、C【解析】

先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.【详解】双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.故选:C【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.10、C【解析】试题分析:抛物线的准线为,双曲线的离心率为2,则,,渐近线方程为,求出交点,,,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;11、D【解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.12、C【解析】

根据直线与平面,平面与平面的位置关系进行判断即可.【详解】根据面面平行的性质以及判定定理可得,若,,则,故①正确;若,,平面可能相交,故②错误;若,,则可能平行,故③错误;由线面垂直的性质可得,④正确;故选:C【点睛】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由于,且,则,得,则.14、【解析】

解一元二次不等式化简集合,再进行集合的交运算,即可得到答案.【详解】,,.故答案为:.【点睛】本题考查一元二次不等式的求解、集合的交运算,考查运算求解能力,属于基础题.15、【解析】

由棱长为的正四面体求出外接球的半径,进而求出正三棱锥的高及侧棱长,可得正三棱锥的三条侧棱两两相互垂直,进而求出体积与表面积,设内切圆的半径,由等体积,求出内切圆的半径.【详解】由题意可知:多面体的外接球即正四面体的外接球作面交于,连接,如图则,且为外接球的直径,可得,设三角形的外接圆的半径为,则,解得,设外接球的半径为,则可得,即,解得,设正三棱锥的高为,因为,所以,所以,而,所以正三棱锥的三条侧棱两两相互垂直,所以,设内切球的半径为,,即解得:.故答案为:.【点睛】本题考查多面体与球的内切和外接问题,考查转化与化归思想,考查空间想象能力、运算求解能力,求解时注意借助几何体的直观图进行分析.16、1【解析】

利用流程图,逐次进行运算,直到退出循环,得到输出值.【详解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此时14>10×1+3,输出x,故输出x的值为1.故答案为:.【点睛】本题主要考查程序框图的识别,“还原现场”是求解这类问题的良方,侧重考查逻辑推理的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)故函数在上单调递增,在上单调递减;(2).【解析】试题分析:(Ⅰ)根据题意得到的解析式和定义域,求导后根据导函数的符号判断单调性.(Ⅱ)分析题意可得对任意,恒成立,构造函数,则有对任意,恒成立,然后通过求函数的最值可得所求.试题解析:(I)由题意得,,∴.当时,,函数在上单调递增;当时,令,解得;令,解得.故函数在上单调递增,在上单调递减.综上,当时,函数在上单调递增;当时,函数在上单调递增,在上单调递减.(II)由题意知.,当时,函数单调递增.不妨设,又函数单调递减,所以原问题等价于:当时,对任意,不等式恒成立,即对任意,恒成立.记,由题意得在上单调递减.所以对任意,恒成立.令,,则在上恒成立.故,而在上单调递增,所以函数在上的最大值为.由,解得.故实数的最小值为.18、(1)见解析;(2)(i)该农场若采用延长光照时间的方法,预计每年的利润为426千元;(ii)若采用降低夜间温度的方法,预计每年的利润为424千元;(3)分布列见解析,.【解析】

(1)估计第一组数据平均数和第二组数据平均数来选择.(2)对于两种方法,先计算出每亩平均产量,再算农场一年的利润.(3)估计频率分布直方图可知,增产明显的大棚间数为5间,由题意可知,的可能取值有0,1,2,3,再算出相应的概率,写出分布列,再求期望.【详解】(1)第一组数据平均数为千斤/亩,第二组数据平均数为千斤/亩,可知第一组方法较好,所以采用延长光照时间的方法;((2)(i)对于采用延长光照时间的方法:每亩平均产量为千斤.∴该农场一年的利润为千元.(ii)对于采用降低夜间温度的方法:每亩平均产量为千斤,∴该农场一年的利润为千元.因此,该农场若采用延长光照时间的方法,预计每年的利润为426千元;若采用降低夜间温度的方法,预计每年的利润为424千元.(3)由图可知,增产明显的大棚间数为5间,由题意可知,的可能取值有0,1,2,3,;;;.所以的分布列为0123所以.【点睛】本题主要考查样本估计总体和离散型随机变量的分布列,还考查了数据处理和运算求解的能力,属于中档题.19、,;,证明见解析【解析】

对函数进行求导,并通过三角恒等变换进行转化求得的表达式,对函数再进行求导并通过三角恒等变换进行转化求得的表达式;根据中,的表达式进行归纳猜想,再利用数学归纳法证明即可.【详解】(1),其中,[,其中,(2)猜想,下面用数学归纳法证明:①当时,成立,②假设时,猜想成立即当时,当时,猜想成立由①②对成立【点睛】本题考查导数及其应用、三角恒等变换、归纳与猜想和数学归纳法;考查学生的逻辑推理能力和运算求解能力;熟练掌握用数学归纳法进行证明的步骤是求解本题的关键;属于中档题.20、(1)在上增;在上减;(2)(i);(ii)2【解析】

(1)求导求出,对分类讨论,求出的解,即可得出结论;(2)(i)由,求出的值;(ii)由(i)得所求问题转化为,恒成立,设,,只需,根据的单调性,即可求解.【详解】(1)当时,,即在上增;当时,,,,,即在上增;在上减;(2)(i),.(ⅱ),即,即,只需.当时,,在单调递增,所以满足题意;当时,,,,所以在上减,在上增,令,..在单调递减,所以所以在上单调递减,,综上可知,整数的最大值为.【点睛】本题考查函数导数的综合应用,涉及函数的单调性、导数的几何意义、极值最值、不等式恒成立,考查分类讨论

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论