(寒假)人教版数学七年级寒假精讲精练03 平行线的性质+随堂检测(教师版)_第1页
(寒假)人教版数学七年级寒假精讲精练03 平行线的性质+随堂检测(教师版)_第2页
(寒假)人教版数学七年级寒假精讲精练03 平行线的性质+随堂检测(教师版)_第3页
(寒假)人教版数学七年级寒假精讲精练03 平行线的性质+随堂检测(教师版)_第4页
(寒假)人教版数学七年级寒假精讲精练03 平行线的性质+随堂检测(教师版)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页03平行线的性质知识点一知识点一平行线的性质◆1、平行线性质定理性质定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.几何语言表示:∵a∥b(已知),∴∠2=∠3(两直线平行,同位角相等).性质定理2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,同位角相等.几何语言表示:∵a∥b(已知),∴∠2=∠4.(两直线平行,内错角相等).性质定理3:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.简单说成:同旁内角互补,两直线平行.几何语言表示:∵a∥b(已知),∴∠1+∠2=180°(同旁内角互补,两直线平行).◆2、平行线的判定与性质平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别:区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.知识点二知识点二命题及其组成◆1、概念:判断一件事情的语句,叫做命题.【注意】1、命题必须满足的条件:①必须是语句;②对一件事情作出判定;二者缺一不可.2、命题只需具有“判断”功能,而不论这个判断是否对错.◆2、命题的组成每个命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.知识点三知识点三真、假命题◆1、真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题;◆2、假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.知识点四知识点四定理与证明◆1、定理:经过推理证实的真命题叫做定理,定理可以作为继续推理论证的依据.◆2、证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.(a)2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式).◆3、证明的一般步骤:①根据题意画出图形;②依据题设、结论,结合图形,写出已知、求证;③经过分析,找出由已知条件推出结论的方法,或依据结论探寻所需要的条件,再由题设进行挖掘,寻求证明的途径;④书写证明过程.题型一利用平行线的性质求角的度数题型一利用平行线的性质求角的度数【例题1】如图,AB∥CD,直线EF分别与直线AB、直线CD相交于点E,F,点G在CD上,EG平分∠BEF.若∠EGC=58°,求∠EFD的度数.【分析】根据两直线平行,内错角相等求出∠BEG的度数,再根据角平分线的定义得到∠FEG,然后利用平行线的性质可得解.【解答】解:∵AB∥CD,∠EGC=58°,∴∠BEG=∠EGC=58°,∵EG平分∠BEF,∴∠BEF=2∠BEG=116°,∵AB∥CD,∴∠EFD=180°﹣∠BEF=180°﹣116°=64°.解题技巧提炼两直线平行时,应联想到平行线的三个性质,由两条直线平行的位置关系得到两个相关角的数量关系,由角的关系求相应角的度数.【变式1-1】如图,l1∥l2,∠1=38°,∠2=46°,则∠3的度数为()A.46° B.90° C.96° D.134°【分析】根据平行线的性质定理求解即可.【解答】解:∵l1∥l2,∴∠1+∠3+∠2=180°,∵∠1=38°,∠2=46°,∴∠3=96°,故选:C.【变式1-2】如图,已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,则∠BCD的度数为()A.10° B.15° C.20° D.35°【分析】由AB∥CF,∠ABC=70°,易求∠BCF,又DE∥CF,∠CDE=130°,那么易求∠DCF,于是∠BCD=∠BCF﹣∠DCF可求.【解答】解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.故选:C.【变式1-3】如图,如果AB∥EF、EF∥CD,若∠1=50°,则∠2+∠3的和是()A.200° B.210° C.220° D.230°【分析】由平行线的性质可用∠2、∠3分别表示出∠BOE和∠COF,再由平角的定义可得出答案.【解答】解:∵AB∥EF,∴∠2+∠BOE=180°,∴∠BOE=180°﹣∠2,同理可得∠COF=180°﹣∠3,∵O在EF上,∴∠BOE+∠1+∠COF=180°,∴180°﹣∠2+∠1+180°﹣∠3=180°,∴∠2+∠3=180°+∠1=180°+50°=230°,故选:D.【变式1-4】已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为.【分析】①图1时,由两直线平行,同位角相等,等量代换和角的和差计算出∠2的度数为40°;②图2时,同两直线平行,内错角相等,两直线平行,同旁内角互补,等量代换和角的和差计算出∠2的度数为140°.【解答】解:①若∠1与∠2位置如图1所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2=∠3,∴∠1=∠2,又∵∠1=40°,∴∠2=40°;②若∠1与∠2位置如图2所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2+∠3=180°,∴∠2+∠1=180°,又∵∠1=40°∴∠2=180°﹣∠1=180°﹣40°=140°,综合所述:∠2的度数为40°或140°,故答案为:40°或140°.【变式1-5】如图,点C在∠MON的一边OM上,过点C的直线AB∥ON,CD平分∠ACM.当∠DCM=60°时,求∠O的度数.【分析】根据角平分线的定义,即可得到∠ACM的度数,进而得出∠OCB的度数,再依据平行线的性质,即可得到∠O的度数.【解答】解:∵CD平分∠ACM,∴∠ACM=2∠DCM.∵∠DCM=60°,∴∠ACM=120°.∵直线AB与OM交于点C,∴∠OCB=∠ACM=120°(对顶角相等),∵AB∥ON,∴∠O+∠OCB=180°(两直线平行,同旁内角互补),∴∠O=60°.【变式1-6】如图,DB∥FG∥EC,A是FG上的一点,∠ADB=60°,∠ACE=36°,AP平分∠CAD,求∠PAG的度数.【分析】根据平行线的性质,可以得到∠DAG和∠CAG度数,然后根据AP平分∠CAD,即可得到∠PAG的度数.【解答】解:∵DB∥FG∥EC,∴∠BDA=∠DAG,∠ACE=∠CAG,∵∠ADB=60°,∠ACE=36°,∴∠DAG=60°,∠CAG=36°,∴∠DAC=96°,∵AP平分∠CAD,∴∠CAP=48°,∴∠PAG=12°.题型二利用平行线的性质说明两直线垂直题型二利用平行线的性质说明两直线垂直【例题2】已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.【分析】先根据垂直的定义得出∠BHF=90°,再由∠1=∠ACB得出DE∥BC,故可得出∠2=∠BCD,根据∠2=∠3得出∠3=∠BCD,所以CD∥FH,由平行线的性质即可得出结论.【解答】证明:FH⊥AB(已知),∴∠BHF=90°.∵∠1=∠ACB(已知),∴DE∥BC(同位角相等,两直线平行),∴∠2=∠BCD.(两直线平行,内错角相等).∵∠2=∠3(已知),∴∠3=∠BCD(等量代换),∴CD∥FH(同位角相等,两直线平行),∴∠BDC=∠BHF=90°,(两直线平行,同位角相等)∴CD⊥AB.解题技巧提炼准确识别图形,理清图中各角度之间的关系是解题的关键,再综合角平分线的定义、对顶角的性质及邻补角的定义求解.【变式2-1】如图,已知DA⊥AB,DE平分∠ADC,CE平分∠DCB,且∠1+∠2=90°,试说明BC⊥AB.【分析】过E作EF∥AD,交CD于F,求出∠FEC=∠2=∠BCE,根据平行线的判定推出BC∥EF,即可得出答案.【解答】解:过E作EF∥AD,交CD于F,则∠ADE=∠DEF,∵DE平分∠ADC,∴∠1=∠ADE,∴∠1=∠DEF,∵∠1+∠2=90°,∴∠DEC=90°,∴∠DEF+∠FEC=90°,∴∠2=∠FEC,∵CE平分∠DCB,∴∠2=∠BCE,∴∠FEC=∠BCE,∴BC∥EF,∴BC∥AD,∵DA⊥AB,∴BC⊥AB.【变式2-2】已知,如图所示,四边形ABCD中,∠B=90°,DE平分∠ADC,CE平分∠DCB,∠1+∠2=90°,试说明DA⊥AB.【分析】由角平分线的定义和条件可得∠ADC+∠BCD=180°,可证明DA∥BC,再由平行线的性质可得到∠A=90°,可证明DA⊥AB.【解答】证明:∵DE平分∠ADC,CE平分∠DCB,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=180°,∴AD∥BC,∴∠A+∠B=180°,∴∠A=180°﹣∠B=90°,∴DA⊥AB.【变式2-3】如图,AD∥BE,∠B=∠D,∠BAD的平分线交BC的延长线于点E,CF平分∠DCE.求证:CF⊥AE.【分析】由AD∥BE,∠B=∠D,可推出∠B+∠BAD=180°,∠B=∠DCE,AB∥CD,再由角平分线定义可得:∠BAE=12∠BAD,∠FCG=12∠DCE,进而得出:∠CGF=12∠BAD,∠FCG=12∠B,可推出:∠CGF+∠FCG=12(∠BAD+∠B)=12【解答】证明:∵AD∥BE,∴∠DCE=∠D,∠B+∠BAD=180°,∵∠B=∠D,∴∠B=∠DCE,∴AB∥CD,∴∠CGF=∠BAE,∵AE平分∠BAD,∴∠BAE=12∠BAD,∴∠CGF=1∵CF平分∠DCE,∴∠FCG=12∠DCE,∴∠FCG=1∴∠CGF+∠FCG=12(∠BAD+∠B)=12×∴∠CFG=180°﹣(∠CGF+∠FCG)=180°﹣90°=90°,∴CF⊥AE.题型三平行线的性质与判定的综合应用题型三平行线的性质与判定的综合应用【例题3】如图,已知∠2+∠3=180°,∠1=120°,则∠4=()A.120o B.80o C.60o D.75o【分析】根据平行线的判定推出a∥b,根据平行线的性质得出∠1=∠5,再根据邻补角的定义求解即可.【解答】解:如图,∵∠2+∠3=180°,∴a∥b,∴∠1=∠5,∵∠1=120°,∴∠5=120°,∴∠4=180°﹣120°=60°,故选:C.解题技巧提炼平行线的判定和性质在解题中经常反复使用,见到角相等或互补就应该联想到能否判定两条直线平行,见到直线平行就应该联想到能否证明相关的角相等或互补.【变式3-1】如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠2+∠3=180° B.∠1+∠2=180°+∠3 C.∠1+∠3=180°+∠2 D.∠2+∠3=180°+∠1【分析】根据两直线平行,同旁内角互补可得∠2+∠BDC=180°,再根据两直线平行,内错角相等可得∠3=∠CDE,而∠CDE=∠1+∠BDC,整理可得∠2+∠3﹣∠1=180°.【解答】解:∵AB∥CD∥EF,∴∠2+∠BDC=180°,∠3=∠CDE,又∠BDC=∠CDE﹣∠1,∴∠2+∠3﹣∠1=180°.故选:D.【变式3-2】如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.【分析】先证CE∥BF得∠AOE=∠AFB,由AF⊥CE得∠AOE=∠AFB=90°,利用平角定义得出∠AFC+∠2=90°,结合∠A+∠2=90°可以得出∠AFC=∠A,从而得证.【解答】证明:∵AF⊥CE(已知),∴∠AOE=90°(垂直的定义).又∵∠1=∠B(已知),∴CE∥BF(同位角相等,两直线平行),∴∠AFB=∠AOE(两直线平行,同位角相等),∴∠AFB=90°(等量代换).又∵∠AFC+∠AFB+∠2=180°(平角的定义),∴∠AFC+∠2=(90)°.又∵∠A+∠2=90°(已知),∴∠A=∠AFC(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).故答案为:垂直的定义;已知;CE∥BF;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;180°;90;同角的余角相等;AB∥CD.【变式3-3】如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB并交BD于H,且∠EHD+∠HBF=180°.(1)若∠F=30°,求∠ACB的度数;(2)若∠F=∠G,求证:DG∥BF.【分析】(1)由对顶角相等、同旁内角互补,两直线平行判定BF∥EC,则同位角∠ACE=∠F,再根据角平分线的性质即可求解;(2)结合已知条件,角平分线的定义,利用等量代换推知同位角∠BCE=∠G,则易证DG∥BF.【解答】(1)解:∵∠EHD+∠HBF=180°,∠EHD=∠BHC,∴∠BHC+∠HBF=180°,∴BF∥EC,∴∠ACE=∠F=30°,又∵CE平分∠ACB,∴∠ACB=2∠ACE=60°.故∠ACB的度数为60°;(2)证明:∵CE平分∠ACB,∴∠BCE=∠ACE,∵∠ACE=∠F,∠F=∠G,∴∠BCE=∠G,∴DG∥EC,又∵BF∥EC,∴DG∥BF.【变式3-4】如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠D+∠AED=180°,∠C=∠EFG.(1)求证:AB∥CD;(2)若∠CED=75°,求∠FHD的度数.【分析】(1)根据平行线的判定即可求解;(2)根据平行线的性质得到∠DGF=∠EFG,根据等量关系得到∠DGF=∠C,根据平行线的判定可得CE∥GF,再根据平行线的性质和邻补角的定义即可求解.【解答】(1)证明:∵∠D+∠AED=180°,∴AB∥CD;(2)解:∵AB∥CD,∴∠DGF=∠EFG,∵∠C=∠EFG,∴∠DGF=∠C,∴CE∥GF,∵∠CED=75°,∴∠DHG=75°,∴∠FHD=105°.【变式3-5】有一天李小虎同学用“几何画板”画图,他先画了两条平行线AD,BC,然后在平行线间画了一点E,连接CE,DE后(如图①),他用鼠标左键点住点E,拖动后,分别得到如图②,③,④等图形,这时他突然一想,∠C,∠D与∠DEC之间的度数有没有某种联系呢?接着小虎同学通过利用“几何画板”的“度量角度”和“计算”功能,找到了这三个角之间的关系.(1)请直接写出图①到图④各图中的∠C,∠D与∠DEC之间的关系吗?(2)请从图③④中,选一个说明它成立的理由.【分析】(1)根据两直线平行,同位角相等,内错角相等,同旁内角互补解答;(2)选择③,过点E作EF∥AB,根据两直线平行,内错角相等可得∠D=∠DEF,∠B=∠BEF,再根据∠BED=∠DEF﹣∠BEF整理即可得证.【解答】解:(1)①∠C+∠D=∠DEC;②∠C+∠D+∠DEC=360°;③∠DEC=∠C﹣∠D;④∠DEC=∠D﹣∠C;(2)选图③,过点E作EF∥AD,如图:∵EF∥AD,AD∥BC,∴EF∥AD∥BC,∴∠C=∠CEF,∠D=∠DEF,又∵∠DEC=∠CEF﹣∠DEF,∴∠DEC=∠C﹣∠D.【变式3-6】(1)问题发现:如图①,直线AB∥CD,连接BE,CE,可以发现∠B+∠C=∠BEC.请把下面的证明过程补充完整:证明:过点E作EF∥AB,∵AB∥DC(已知),EF∥AB(辅助线的作法),∴EF∥DC().∴∠C=∠CEF.().∵EF∥AB,∴∠B=∠BEF(同理).∴∠B+∠C=.即∠B+∠C=∠BEC.(2)拓展探究:如果点E运动到图②所示的位置,其他条件不变,说明:∠B+∠BEC+∠C=360°.(3)解决问题:如图③,AB∥DC,E、F、G是AB与CD之间的点,直接写出∠1,∠2,∠3,∠4,∠5之间的数量关系.【分析】(1)过点E作EF∥AB,根据平行线的性质及角的和差求解即可;(2)过点E作EF∥AB,根据平行线的性质及角的和差求解即可;(3)过点F作FM∥AB,根据(1)求解即可.【解答】(1)证明:如图①,过点E作EF∥AB,∵AB∥DC(已知),EF∥AB(辅助线的作法),∴EF∥DC(平行于同一直线的两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵EF∥AB,∴∠B=∠BEF(同理),∴∠B+∠C=∠BEF+∠CEF(等量代换),即∠B+∠C=∠BEC,故答案为:平行于同一直线的两直线平行;两直线平行,内错角相等;∠BEF+∠CEF;(2)解:如图②,过点E作EF∥AB,∵AB∥CD,EF∥AB,∴EF∥CD,∴∠C+∠CEF=180°,∠B+∠BEF=180°,∴∠B+∠C+∠AEC=360°,∴∠B+∠C=360°﹣(∠BEF+∠CEF),即∠B+∠C=360°﹣∠BEC;∠B+∠BEC+∠C=360°.(3)解:∠1+∠3+∠5=∠2+∠4,理由如下:如图,过点F作FM∥AB,则AB∥FM∥CD,由(1)得,∠1+∠3+∠5=∠2+∠4.故答案为:∠1+∠3+∠5=∠2+∠4.【点评】此题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.题型四利用平行线的性质解决实际问题题型四利用平行线的性质解决实际问题【例题4】如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线l为什么和离开潜望镜的光线m是平行的?【分析】根据平行线的性质结合条件可得∠1=∠2=∠3=∠4,可证得∠5=∠6,可证明l∥m,据此填空即可.【解答】解:∵AB∥CD(已知),∴∠2=∠3(两直线平行,内错角相等),∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(平角定义),即:∠5=∠6(等量代换),∴l∥m.解题技巧提炼给出一个实际问题,联系平行线的性质解答实际问题,有时需要通过作辅助线构造平行线,同时还会综合运用平行线的判定和性质.【变式4-1】如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是千米.【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【解答】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°﹣∠ABG﹣∠EBC=180°﹣48°﹣42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故答案为:8.【变式4-2】学习平行线的性质后,老师给小明出了一道题:如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是多少度?请你帮小明求出()A.120° B.130° C.140° D.150°【分析】作BD∥AE,如图,利用平行线的传递性得到BD∥CF,再根据平行线的性质由BD∥AE得到∠ABD=∠A=120°,则∠DBC=30°,然后利用BD∥CF求出∠C.【解答】解:作BD∥AE,如图,∵AE∥CF,∴BD∥CF,∵BD∥AE,∴∠ABD=∠A=120°,∴∠DBC=150°﹣120°=30°,∵BD∥CF,∴∠C+∠DBC=180°,∴∠C=180°﹣30°=150°.故选:D.【点评】本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等.【变式4-3】某学员在驾校练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30° B.第一次向左拐45°,第二次向左拐45° C.第一次向左拐60°,第二次向右拐120° D.第一次向左拐53°,第二次向左拐127°【分析】根据平行线的性质分别判断得出即可.【解答】解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同旁内角,且互补,故选:D.【变式4-4】工人师傅对一个如图所示的零件进行加工,把材料弯成了一个40°的锐角,然后准备在A处第二次加工拐弯,要保证弯过来的部分与BC保持平行,弯的角度应是.【分析】根据平行线的性质得出∠CBA+∠FAB=180°,代入求解,即可解决问题.【解答】解:如图1,作AF∥BC,则∠CBA=∠BAF=40°,如图2,作AF∥BC,则∠CBA+∠FAB=180°,∵∠CBA=40°,∴∠FAB=140°.故答案为:40°或140°.【变式4-5】如图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2是乎动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠AGC=80°,则∠DEF的度数为()A.110° B.120° C.130° D.140°【分析】过点F作FM∥CD,因为AB∥CD,所以AB∥CD∥FM,再根据平行线的性质可以求出∠MFA,∠EFA,进而可求出∠EFM,再根据平行线的性质即可求得∠DEF.【解答】解:如图,过点F作FM∥CD,∵AB∥CD,∴AB∥CD∥FM,∴∠DEF+∠EFM=180°,∠MFA+∠BAG=180°,∴∠MFA=180°﹣∠BAG=180°﹣150°=30°.∵CG∥EF,∴∠EFA=∠AGC=80°.∴∠EFM=∠EFA﹣∠MFA=80°﹣30°=50°.∴∠DEF=180°﹣∠EFM=180°﹣50°=130°.故选:C.题型五利用平行线的性质解决折叠问题题型五利用平行线的性质解决折叠问题【例题5】如图所示,把一张长方形纸条ABCD沿EF折叠,若∠1=58°,则∠AEG的度数()A.58° B.64° C.72° D.60°【分析】由平行线的性质得∠DEF=∠1=58°,由折叠的性质得∠GEF=∠DEF=58°,再由平角定义求出∠AEG即可.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠1=58°,由折叠的性质得:∠GEF=∠DEF=58°,∴∠AEG=180°﹣58°﹣58°=64°;故选:B.解题技巧提炼结合长方形的性质,对边是互相平行的,从而综合折叠的特征和平行线的性质求解即可.折叠前后图形的形状和大小不变,只是位置发生了变化.【变式5-1】如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是()A.77° B.64° C.26° D.87°【分析】依据平行线的性质,即可得到∠AEG的度数,再根据折叠的性质,即可得出∠α的度数.【解答】解:∵矩形纸条ABCD中,AD∥BC,∴∠AEG=∠BGD'=26°,∴∠DEG=180°﹣26°=154°,由折叠可得,∠α=12∠DEG=12×154°【变式5-2】如图,把长方形ABCD沿EF折叠后使两部分重合,若∠1=30°,则∠AEF=()A.100° B.150° C.110° D.105°【分析】根据折叠的性质及∠1=30°可求出∠BFE的度数,再由平行线的性质即可解答.【解答】解:∵把长方形ABCD沿EF折叠后使两部分重合,∴∠BFE=∠EFH,∵∠BFE+∠EFH+∠1=180°,∠1=30°,∴∠BFE=∠EFH=12(180°﹣30°)=12×又∵AD∥BC,∴∠AEF+∠BFE=180°,∴∠AEF=180°﹣75°=105°.故选:D.【变式5-3】如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE;若∠B=50°,则∠BDF的度数为()A.40° B.50° C.80° D.100°【分析】首先利用平行线的性质得出∠ADE=50°,再利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF,从而求出∠BDF的度数.【解答】解:∵BC∥DE,若∠B=50°,∴∠ADE=50°,又∵△ABC沿线段DE折叠,使点A落在点F处,∴∠ADE=∠EDF=50°,∴∠BDF=180°﹣50°﹣50°=80°,故选:C.【变式5-4】已知长方形纸条ABCD,点E,G在AD边上,点F,H在BC边上.将纸条分别沿着EF,GH折叠,如图,当DC恰好落在EA'上时,∠1与∠2的数量关系是()A.∠1+∠2=135° B.∠2﹣∠1=15° C.∠1+∠2=90° D.2∠2﹣∠1=90°【分析】根据折叠的性质和平角的定义解答即可.【解答】解:∵DC恰好落在EA'上,∴∠ED′G=90°,∴∠D′EG+∠D′GE=90°,∴∠A′EA+∠D′GD=360°﹣90°=270°,由折叠得,∠1=12∠A′EA,∠2=12∠∴∠1+∠2=135°,故选:A.【变式5-5】如图,长方形ABCD中,沿折痕CE翻折△CDE得△CD′E,已知∠ECD′被BC分成的两个角相差18°,则图中∠1的度数为()A.72°或48° B.72°或36° C.36°或54° D.72°或54°【分析】设∠FCD'=α,则∠BCE=α+18°或α﹣18°,分两种情况进行讨论:①当∠BCE=α+18°时,∠ECD'=2α+18°=∠DCE,②当∠BCE=α﹣18°时,∠ECD'=2α﹣18°=∠DCE,分别根据∠BCD=90°列式计算即可.【解答】解:如图,设∠FCD'=α,则∠BCE=α+18°或α﹣18°,①当∠BCE=α+18°时,∠ECD'=2α+18°=∠DCE,∵∠BCD=90°,∴α+18°+2α+18°=90°,解得α=18°,∴∠CFD'=90°﹣18°=72°=∠1;②当∠BCE=α﹣18°时,∠ECD'=2α﹣18°=∠DCE,∵∠BCD=90°,∴α﹣18°+2α﹣18°=90°,解得α=42°,∴∠CFD'=90°﹣42°=48°=∠1;综上所述,图中∠1的度数为72°或48°,故选:A.题型六借助三角尺求角的度数题型六借助三角尺求角的度数【例题6】已知直线a∥b,将一块含30°角的直角三角板(∠BAC=30°,∠ACB=90°)按如图所示的方式放置,并且顶点A,C分别落在直线a,b上,若∠1=22°.则∠2的度数是()A.38° B.45° C.52° D.58°【分析】根据已知易得∠DAC=52°,然后利用平行线的性质即可解答.【解答】解:如图:∵∠1=22°,∠BAC=30°,∴∠DAC=∠1+∠BAC=52°,∵直线a∥b,∴∠2=∠DAC=52°,故选:C.解题技巧提炼借助三角尺求角的度数主要是利用三角尺的特征,结合平行线的性质一般解决求角的度数问题.【变式6-1】如图,将三角板的直角顶点按如图所示摆放在直尺的一边上,则下列结论不一定正确的是()A.∠1=∠2 B.∠2+∠3=90° C.∠3+∠4=180° D.∠1+∠2=90°【分析】根据平行线的性质定理求解.【解答】解:∵两直线平行,同位角相等,∴∠1=∠2,故选项A不符合题意;∠1+∠2不一定等于90°,故D符合题意;由题意可得:90°+∠2+∠3=180°,∴∠2+∠3=90°,故选项B不符合题意;∵两直线平行,同旁内角互补,∴∠3+∠4=180°,故选项C不符合题意;故选:D.【变式6-2】如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.30°【分析】先利用平行线的性质得出∠3,进而利用三角板的特征求出∠4,最后利用平行线的性质即可.【解答】解:如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a∥b,AB∥b,∴AB∥a,∴∠2=∠4=32°,故选:C.【变式6-3】将一副直角三角板按如图所示的方式叠放在一起,若AC∥DE.则∠BAE的度数为()A.85° B.75° C.65° D.55°【分析】由题意得∠E=60°,∠DAE=∠B=90°,∠BAC=45°,由平行线的性质可求得∠CAE=120°,从而可求得∠CAD=30°,则∠BAD=15°,即可求∠BAE的度数.【解答】解:由题意得:∠E=60°,∠DAE=∠B=90°,∠BAC=45°,∵AC∥DE,∴∠E+∠CAE=180°,∴∠CAE=180°﹣∠E=120°,∴∠CAD=∠CAE﹣∠DAE=30°,∴∠BAD=∠BAC﹣∠CAD=15°,∴∠BAE=∠DAE﹣∠BAD=75°.故选:B.【变式6-4】如图,AB∥CD,一副三角尺按如图所示放置,∠AEG=20°,则∠HFD的度数为()A.40° B.35° C.30° D.25°【分析】将∠AEG,∠GEF的度数,代入∠AEF=∠AEG+∠GEF中,可求出∠AEF的度数,由AB∥CD,利用“两直线平行,内错角相等”,可求出∠DFE的度数,再结合∠HFD=∠DFE﹣∠EFH,即可求出∠HFD的度数.【解答】解:∵∠AEG=20°,∠GEF=45°,∴∠AEF=∠AEG+∠GEF=20°+45°=65°.∵AB∥CD,∴∠DFE=∠AEF=65°,∴∠HFD=∠DFE﹣∠EFH=65°﹣30°=35°.故选:B.题型七命题的识别及改写题型七命题的识别及改写【例题7】下列语句是命题的是()A.延长线段AB至C B.垂线段最短 C.直线AB平行于直线CD吗 D.不许大声讲话【分析】命题是判断一件事情的语句;分析各个选项中的句子,是不是判断了一件事情即可判定.【解答】解:A.延长线段AB至C,不是命题;B.垂线段最短,是命题;C.直线AB平行于直线CD吗,不是命题;D.不许大声讲话,不是命题.故选:B.解题技巧提炼命题是判断一件事情的语句,正确区分命题的题设和结论是把命题写成“如果…那么…”形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题改写的原则是不改变原题的原意.【变式7-1】下列语句中,不是命题的是()A.相等的角是对顶角 B.同旁内角互补 C.平角是一条直线 D.延长线段AO到点C,使OC=OA【分析】根据命题的定义作答.【解答】解:根据命题的定义,可知A、B、C都是命题,而D属于作图语言,不是命题.故选:D.【变式7-2】下列命题是真命题的是()A.同位角相等 B.内错角相等 C.相等的角是对顶角 D.同旁内角互补,两直线平行【分析】利用平行线的性质及判定方法、对顶角的定义等知识分别判断后即可确定正确的选项.【解答】解:A、两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;B、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;C、相等的角不一定是对顶角,故原命题错误,是假命题,不符合题意;D、同旁内角互补,两直线平行,正确,是真命题,符合题意.故选:D.【变式7-3】下列命题中是假命题的是()A.对顶角相等 B.在同一平面内,垂直于同一条直线的两条直线平行 C.同旁内角互补 D.平行于同一条直线的两条直线平行【分析】根据对顶角相等、平行线的判定定理和性质定理判断即可.【解答】解:A、对顶角相等,是真命题,不符合题意;B、在同一平面内,垂直于同一条直线的两条直线平行,是真命题,不符合题意;C、两直线平行,同旁内角互补,本选项说法是假命题,符合题意;D、平行于同一条直线的两条直线平行,是真命题,不符合题意;故选:C.【变式7-4】已知:在同一平面内,三条直线a,b,c.下列四个命题为真命题的是.(填写所有真命题的序号)①如果a∥b,a⊥c,那么b⊥c;②如果b⊥a,c⊥a,那么b⊥c;③如果a∥b,c∥b,那么a∥c;④如果b⊥a,c⊥a,那么b∥c.【分析】根据平行线的性质和判定定理判断即可.【解答】解:①如果a∥b,a⊥c,那么b⊥c,是真命题;②如果b⊥a,c⊥a,那么b∥c,故本小题命题是假命题;③如果a∥b,c∥b,那么a∥c,是真命题;④如果b⊥a,c⊥a,那么b∥c,是真命题;故答案为:①③④.【变式7-5】对假命题“若a>b,则a2>b2”举反例,正确的反例是()A.a=﹣1,b=2 B.a=2,b=﹣1 C.a=﹣1,b=0 D.a=﹣1,b=﹣2【分析】根据有理数的大小比较法则、有理数的乘法法则计算,根据假命题的概念判断即可.【解答】解:当a=﹣1,b=﹣2时,a>b,a2=1,b2=4,则a2<b2,∴若a>b,则a2>b2”是假命题,故选:D.【变式7-6】下列命题:①两个角的和等于平角时,这两个角互为邻补角;②过一点有且只有一条直线与已知直线平行;③内错角相等;④a,b,c是直线,若a∥b,b∥c,则a∥c.其中真命题的个数为()A.4 B.3 C.2 D.1【分析】根据邻补角定义、平行线的判定与性质解答即可.【解答】解:①两个角的和等于平角时,这两个角不一定互为邻补角,原命题是假命题;②过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;③两条平行线被第三条直线所截,内错角相等,原命题是假命题;④a,b,c是直线,若a∥b,b∥c,则a∥c,原命题是真命题.故选:D.【变式7-7】把下列命题改写成“如果…那么…”的形式,并指出命题的真假.(1)等角的补角相等.(2)垂直于同一直线的两直线平行.【分析】(1)等角的补角相等的题设为两个角是两相等角的补角,结论为这两个角相等,它为真命题;(2)垂直于同一直线的两直线平行的题设为两条直线都垂直于同一条直线,结论为这两条直线平行;由于没有同一平面的条件,所以它为假命题.【解答】解:(1)等角的补角相等改写成“如果…那么…”的形式为:如果两个角是两相等角的补角,那么这两个角相等.此命题为真命题;(2)垂直于同一直线的两直线平行改写成“如果…那么…”的形式为:如果两条直线都垂直于同一条直线,那么这两条直线平行.此命题为假命题.【变式7-8】判断下列命题的真假,若是假命题,举出反例.(1)若两个角不是对顶角,则这两个角不相等;(2)若a+b=0,则ab=0;(3)若ab=0,则a+b=0.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:(1)假命题.如:两条直线平行,内错角相等.(2)假命题.如:a=5和b=0.(3)假命题,如a=5和b=0.题型八命题的分析与证明题型八命题的分析与证明【例题8】如图,在三角形ABC中,AD⊥BC于点D,点E是AB上一点,EF⊥BC于点F,点G是AC上一点,连接DG,且∠1=∠2.求证:AB∥DG.【分析】根据“同一平面内,垂直于同一直线的两直线平行”得到EF∥AD,根据平行线的性质结合等量代换推出∠BAD=∠2,即可判定AB∥DG.【解答】证明:∵EF⊥BC,AD⊥BC,∴EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠BAD=∠2,∴AB∥DG.解题技巧提炼本题考查了命题证明的书写,推理过程要具有逻辑性,在解题的过程中需要综合运用平行线的性质与判定.【变式8-1】已知:如图,∠1+∠2=180°,∠B=∠3.求证:DE∥BC.【分析】由已知条件可证得AB∥EF,从而有∠3=∠ADE,则得∠B=∠ADE,得证DE∥BC.【解答】证明:∵∠1+∠2=180°,∠1+∠ADG=180°,∴∠2=∠ADG,∴AB∥EF,∴∠3=∠ADE,∵∠B=∠3,∴∠B=∠ADE,∴DE∥BC.【变式8-2】如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.【分析】先证CE∥BF得∠AOE=∠AFB,由AF⊥CE得∠AOE=∠AFB=90°,利用平角定义得出∠AFC+∠2=90°,结合∠A+∠2=90°可以得出∠AFC=∠A,从而得证.【解答】证明:∵AF⊥CE(已知),∴∠AOE=90°(垂直的定义).又∵∠1=∠B(已知),∴CE∥BF(同位角相等,两直线平行),∴∠AFB=∠AOE(两直线平行,同位角相等),∴∠AFB=90°(等量代换).又∵∠AFC+∠AFB+∠2=180°(平角的定义),∴∠AFC+∠2=90°.又∵∠A+∠2=90°(已知),∴∠A=∠AFC(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).【点评】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定和性质,并灵活运用.【变式8-3】如图,在四边形ABCD中.点E为AB延长线上一点,点F为CD延长线上一点,连接EF,交BC于点G,交AD于点H,若∠1=∠2,∠A=∠C,求证:∠E=∠F.【分析】应用平行线的判定与性质进行求解即可得出答案.【解答】证明:∵∠1=∠3(对顶角相等),∠1=∠2(已知),∴∠2=∠3(等量代换),∴AD∥BC(同位角相等,两直线平行),∴∠A+∠4=180°(两直线平行,同旁内角互补),∵∠A=∠C(已知),∴∠C+∠4=180°(等量代换),∴CF∥EA(同旁内角互补,两直线平行),∴∠E=∠F(两直线平行,内错角相等),【变式8-4】如图,EF⊥AC交AC于点F,DB⊥AC交AC于点M,∠1=∠2,∠3=∠C,求证:AB∥MN.【分析】根据平行线的判定定理求解即可.【解答】解:AB∥MN,理由如下:∵EF⊥AC,DB⊥AC,∴DB∥EF,∴∠2=∠MDC,又∵∠1=∠2,∴∠1=∠MDC,∴MN∥CD,又∵∠3=∠C,∴AB∥CD,∴AB∥MN.【变式8-5】如图,点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D,F,点M,G在AB上,∠AMD=∠AGF,∠1=∠2.求证:(1)∠2=∠CBD;(2)MD∥BC.【分析】(1)利用垂直于同一直线的两直线平行,得到平行线,利用平行线的性质:两直线平行,同位角相等推理即可;(2)利用两条直线都平行于第三条直线,则这两条直线也平行推理即可.【解答】证明:(1)∵BD⊥AC,EF⊥AC,∴BD∥EF,∴∠2=∠CBD;(2)∵∠1=∠2,∠2=∠CBD,∴∠1=∠CBD,∴GF∥BC,∵∠AMD=∠AGF,∴GF∥MD,∴MD∥BC.【变式8-6】如图,∠ABC的两边分别平行于∠DEF的两条边,且∠ABC=45°.(1)图1中:∠DEF=,图2中:∠DEF=;(2)请观察图1、图2中∠DEF分别与∠ABC有怎样的关系,请你归纳出一个命题.【分析】(1)图1,根据平行线的性质,由AB∥DE得到∠B=∠DGC=45°,再由BC∥EF得∠DEF=∠DGC=45°;图2,根据平行线的性质,由AB∥DE得∠B=∠BGE=45°,再由BC∥EF得∠DEF+∠BGE=180°,所以∠DEF=135°;(2)由(1)的计算结果易得∠DEF与∠ABC相等,∠DEF与∠ABC互补,这个结论可归纳为:如果两个角的两边分别平行,那么这两个角相等或互补.【解答】解:(1)图1,∵AB∥DE,∴∠B=∠DGC=45°,∵BC∥EF,∴∠DEF=∠DGC=45°;图2,∵AB∥DE,∴∠B=∠BGE=45°,∵BC∥EF,∴∠DEF+∠BGE=180°,∴∠DEF=180°﹣45°=135°;故答案为45°,135°;(2)∠DEF与∠ABC相等,∠DEF与∠ABC互补,结论:如果两个角的两边分别平行,那么这两个角相等或互补.平行线的性质随堂检测1.下列语句是命题的是()A.画出两个相等的角 B.所有的直角都相等吗? C.延长线段AB到C,使得BC=BA D.两直线平行,内错角相等【分析】利用命题的定义判断即可.【解答】解:A.画出两个相等的角,没有对一件事情做出判断,故A选项不是命题,不符合题意;B.所有的直角都相等吗?是表示疑问的语句,而不是表示判断的语句,故选项B不符合题意;C.延长线段AB到C,使得BC=BA,不是表示判断的语句,故选项C不符合题意;D.两直线平行,内错角相等,是表示判断的语句,故D是命题,符合题意.故选:D.2.已知,直线m∥n,将含30°的直角三角板按照如图位置放置,∠1=25°,则∠2等于()A.35° B.45° C.55° D.65°【分析】根据对顶角的性质可以得出∠CDE=25°,然后利用30°的直角三角板可得∠ACB=30°,最后利用平行线的性质∠2=∠CEF=55°.【解答】解:如图:∵∠1=25°,∠1与∠CDE是对顶角,∴∠CDE=∠1=25°,∵∠ACB=30°,∴∠CEF=∠ACB+∠CDE=55°,∵m∥n,∴∠2=∠CEF=55°.故选:C.3.如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AEC的大小为()A.55° B.65° C.70° D.80°【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AEC的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠AEC=∠BAE=65°.故选:B.4.有下列四种说法:(1)过直线外一点有且只有一条直线与这条直线平行(2)相等的两个角是对顶角(3)直线外一点到这条直线的垂线段,叫做这点到直线的距离(4)垂直于同一条直线的两直线平行:其中正确的有()A.0个 B.1个 C.2个 D.3个【分析】利用平行线的判定与性质,平行公理,点到直线的距离的定义对各项进行分析即可.【解答】解:(1)过直线外一点有且只有一条直线与这条直线平行,故(1)正确;(2)相等的两个角不一定是对顶角,故(2)错误;(3)直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,点到直线的距离是一个长度,而不是一个图形,故说法(3)错误;(4)在同一平面内,垂直于同一条直线的两直线平行,故(4)错误;综上所述,正确的只有1个.故选:B.5.如图,AB∥EF,C点在EF上,∠EAC=∠ECA,BC平分∠DCF,且AC⊥BC.则关于结论①AE∥CD;②∠BDC=2∠1,下列判断正确的是()A.①②都正确 B.①②都错误 C.①正确,②错误 D.①错误,②正确【分析】由平行线的性质得出∠ECA=∠BAC,∠BCF=∠B,证出∠1+∠BCD=90°,∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论