轨道侧光伏电力融入城郊高架城市轨道交通牵引电力系统研究_第1页
轨道侧光伏电力融入城郊高架城市轨道交通牵引电力系统研究_第2页
轨道侧光伏电力融入城郊高架城市轨道交通牵引电力系统研究_第3页
轨道侧光伏电力融入城郊高架城市轨道交通牵引电力系统研究_第4页
轨道侧光伏电力融入城郊高架城市轨道交通牵引电力系统研究_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AppliedEnergy260(2020)114177

Contentslistsavailableat

ScienceDirect

AppliedEnergy

journalhomepage:

/locate/apenergy

Studyoftracksidephotovoltaicpowerintegrationintothetractionpowersystemofsuburbanelevatedurbanrailtransitline

XiaojunShen,HongyangWei,LiWei⁎

DepartmentofElectricalEngineering,TongjiUniversity,Shanghai200092,China

HIGHLIGHTS

.

•TracksidePVpowerintegratedintothetractionpowersystemofurbanrailtransit(URT)isstudied

.

•TracksidePVinstallationinsuburbanelevatedURTLineiseconomicallyfeasibleinShanghai

.

•ADCsidePVintegrationschemeandenergymanagementstrategyhasbeensuggested

.

•SimulationmodelsbasedonthecharacteristicsofURTpowersystemandmovingtrainsaredeveloped

.

•ChallengesandfuturedirectivesforDCsidePVintegrationinURTsystemareoutlined

ARTICLEINFO

ABSTRACT

Keywords:

Urbanrailtransit

DCtractionpowersystemTracksidePV

DCsidePVpowerintegrationEnergystorage

Thetracksideofsuburbanelevatedurbanrailtransit(URT)lineisapotentialplatformforplacingPhotovoltaic(PV)panels.ThispaperhasmadeacomprehensivestudyoftracksidePVpowerintegrationintothedirectcurrent(DC)tractionpowersupplysystemofURT.WiththeelevatedsectionofMetroLine11insuburbanShanghaiasanexample,thepotentialPVinstallationcapacityhasbeenevaluated.BasedontheuniquefeatureoftheDCtractionpowersupplysystem,aDCsidePVintegrationschemeandcontrolstrategyhasbeenpro-posed.ThesimulationmodelsbasedontheelectricalcharacteristicsofURTpowersystemandthemovingtrainhavebeenespeciallydevelopedasaneffectivetooltoperformthescenarioanalysisofdifferentPVintegrationschemes,andanenergysavingparameter“k”hasbeenproposedtoevaluatetheenergysavingeffect.Itcon-cludesthatDCsidePVintegrationcanhelptocompensatethetractionvoltageandreducethecatenarytrans-missionlossinthetractionstageoftrains,therebyithasahigherenergysavingrate.EvenbetterperformancecanbeachievedwithbothPVandenergystoragesystem(ESS)integratedintotheDCtractionpowersystem.Theenergysavingresultcanachievetheeffectof“1+1>2”,whichmeansthetotalamountofenergysavingsisevenlargerthanthesumofPVorESSworkingalone.Moreover,thetractionpowerqualityandsafetywillalsobeimproved.

1.Introduction

URThasbecomethepreferredsolutiontosolvetrafficcongestioninlargeandmedium-sizedcitiesinChinabecauseofbeingfast,safe,punctual,andhavingalargepassengercapacity

[1,2]

.However,itisalsoahugeenergyconsumer.InShanghai,theannualenergycon-sumptionofURTismorethan1.9billionkWh.Theenergyconservationproblemisbecomingincreasinglyprominent

[3]

.

Asakindofrenewableenergy,PVpowergenerationhasnopollu-tionandnonoise,anditisconvenientandflexibletoinstall

[4]

,whichhasbeenwidelyusedinmanyfields

[5,6]

.AnumberofstudieshavebeencarriedoutonPVplants

[7]

,PVgridconnectionsystemsand

controlstrategy

[8,9]

.ItisveryattractivetoinstallPVpanelsinURTsystem.ThefuturedevelopmentofURTurgentlyneedstheintroductionofthisgreen,sustainableandlow-carbontechnology.TherehavebeenalreadysomedemonstrativeprojectsinURT.Singaporehasinstalled1MWofPVsystemontheroofofmetrodepots,whichcanreducecarbonemissionsby500tonsperyear.TheBelgianRailwayCompanyhasbuilta3KMlongPVtunnelwithapowercapacityof3MW.IndianRailwaysinstalledPVmodulesontheroofoftrainstoprovideventi-lation,lighting,andairconditioning

[10]

.Japan’sJRRailwayCom-panyinstalleda453KWPVunitontheroofoftheTokyoplatform,whichisexpectedtogenerate340MWhofelectricityperyearandre-ducecarbonemissionsby101tons

[11]

.ShanghaiShentongMetro

⁎Correspondingauthor.

E-mailaddress:

weili@

(L.Wei).

/10.1016/j.apenergy.2019.114177

Received16April2019;Receivedinrevisedform7November2019;Accepted13November20190306-2619/©2019ElsevierLtd.Allrightsreserved.

2

X.Shen,etal.AppliedEnergy260(2020)114177

CompanyalsostartedconstructionofPVrooffor6.8MWvehicleseg-ment

[12]

.ThosedemonstrativecasesshowthatPVaccesstorailtransitcanachievedirectenergyconsumptionandutilizationoftheterminal,whichnotonlyreducestheoperatingcost,butalsoeffectivelyreducesthepowertransmissionloss,therebyachievingthegoalofgreenlowcarbondevelopmentofURT.Therefore,itisofgreatvaluetostudytheapplicationofPVpowerinURTsystem.

TheintegrationmodeofPVisdeterminedbythecharacteristicofURTpowersupplysystem.TherearetwopossiblePVintegrationmodes:AC(alternativecurrent)sideaccessandDCsideaccess.TheACsideaccessmodeeitherinvertsthePVpowerintothelowvoltagesystem,orfeedsitbacktothepowergrid.TheDCsideaccessmodeconvertsPVpowerintoDCtractionpowersystemandprovidestractionpowertothetraindirectly.

Currently,theACsidePVaccessmode,whichiseasiertoimple-ment,isadoptedbymostoftheabovedemonstrativeprojectsandat-tractsmoreattentionofresearchers.Jinetal.

[13]

expoundedthefeasibilityandenergyefficiencyofPVpowergenerationsysteminURTsystem,andproposedtouselowvoltagesideaccessinelevatedstationstoprovideaprospectforchangingtheenergysupplymodeofURT.AccordingtothecharacteristicsofURTandtheadvantagesofPVsystem,Wangetal.

[14]

putforwardtheapplicationschemeofPVintegrationintheelevatedstation,depotparkinglotandelevatedsection.Pankovitsetal.

[15]

proposeatopologyofPVintegrationintotheURTsystem,whileMengetal.

[16]

proposedtocombineESSwithPVpowergenerationtoachievefulluseofPVenergy.§engöretal.

[17]

proposedarailwaystationenergymanagementsystemmodelcom-posedofPVandESS,indicatingthefuturedevelopmenttrendofURT.Beyhanetal.studiedthefeasibilityofusingPVpowerfortheinteriorlightingoftheurbanrailvehicles

[18]

.

Interestingly,thevoltagegeneratedbyPVpanels,generallyaround600–800VDC,matchescoincidentlywiththeDCtractionvoltage.ItmeansthatthePVpowercouldbeintegrateddirectlyintotheDCtractionpowersystemwithlesspowerlossthroughasimpleDC/DCpowerconverter.Moreover,theDCsidePVaccessmodecanalsoworkwithESSwhichwillnotonlyreduceenergytransmissionloss,butalsohelptostabilizethetractionnetworkvoltage.Nevertheless,therearefewstudiesonDCsideaccessmode.Hayashiyaetal.

[19]

studiedthefeasibilityofusingsmartgridtechnologyforrailtransitpowersupplysystems,andpointedoutthatDCsideaccessmodecanreduceenergyconsumptionandtransmissionloss,butonlythroughestimation.Cic-carellietal.

[20]

exploredthefeasibilityofconnectingPVandsuper-capacitorESStoDCtractionsystems,andanalyzedthePVcost.Sayedetal.

[21]

proposedaDC/DCconvertertopologyofthePVsystemconnectedtotheDCside,butdidnotmakeanin-depthstudyonthePVpowerconsumptionstrategy.Inaddition,Greenetal.

[22]

andthemutationchangecharity10:10areworkingtogetheronthetopologyandcontrolmodeofdirectaccesstothetractionpowersupplysystemusingPVpanelalongbothsidesofthetrack.Sofar,therehasnotbeenanyrelatedreportonDCsideaccessdemonstrativeproject.

ThereareseveralinstallationalternativesofPVpanelinURTwhichcanbethetrainroof,parkinglot,depotroof,soundbarrier,theelevatedplatformroofandthetwosidesofelevatedline.Inthispaper,withelevatedMetroLine11insuburbanShanghaiasanexample,wefocusonthefeasibilityofPVinstallationalongthetracksideofsuburbanelevatedlineastheprobabilityofthisareabeingshadedbytallbuildingsislessthanthatindowntownarea.Basedonthecharacter-isticsofURTpowersupplysystem,acomprehensivestudyismadeofPVintegrationintotheDCtractionpowersystemintermsofpotentialPVinstallationcapacity,possiblePVaccesspoints,energysavingrateandpowerqualityimprovement.Thenoveltyofthispaperissum-marizedasfollows:

(i)FeasibilityandinstallationpotentialoftracksidePVinstallationinsuburbanelevatedlinehasbeenevaluatedwithShanghaiMetroLine11asanexample.

(ii)BasedontheuniqueelectricalcharacteristicsofURTpowersupplysystem,simulationmodelsofURTpowersystemandthemovingtrainhavebeenespeciallydevelopedasaneffectivetooltoperformthescenarioanalysisofdifferentPVintegrationschemes.

(iii)ADCsidePVintegrationschemeandenergymanagementstrategyhasbeenproposed.ScenarioanalysishasbeenperformedtoassesstheenergysavingcharacteristicsofDCsidePVintegration.Anenergysavingrateparameter‘k’hasbeenproposedtoevaluatetheenergysavingeffect.

(iv)ComparativeanalysishasbeenmadeonACandDCsidePVin-tegrationintermsofenergysavingeffect,powersupplyqualityandsafety,andweconcludethatDCsidePVintegrationhasmoreadvantageintermsofenergysavingrateandpowerqualityim-provement.

Thepaperisstructuredasfollows:

Section2

ismainlyaboutthetechnicalandeconomicanalysisofthefeasibilityoftracksidePVin-tegrationbasedonthedataofShanghaiURTLine11.

Section3

dis-cussestheuniquecharacteristicsofURTpowersystem,andabriefDCsidePVintegrationschemeandenergymanagementstrategyhasbeenproposedaccordingly.In

Section4

,theenergysavingeffectanalysisofDCsidePVintegrationhasbeenperformedbasedonsimulation.

Section5

isacomparativeanalysisofACandDCsidePVintegrationintermsofenergysavingeffect,powersupplyqualityandsafety.Thenin

Section6

,thechallengesandfutureopportunitiesaresummarizedandfinally

Section7

summarizesthisresearch.

2.FeasibilityoftracksidePVinstallationinsuburbanelevatedURTline

2.1.PotentialcapacityoftracksidePVinstallation

Inthepasttwodecades,URThasdevelopedrapidlyinChina.AsofApril2019,38citieshaveopenedsubways.Amongthem,ShanghaiMetrohasamileageof705km,rankingthefirstintheworld.ItisnoteworthythattheURTlinesusuallyhavelong,elevatedsectionsinthesuburbsofChina’sbigcities.Thetracksidealongtheelevatedsections,whichisfreeoftheshadingoftallbuildings,canbeusedforPVinstallation.

Inwhatfollows,weuseShanghaiMetroLine11asanexampleandanalysethepotentialofthetracksidePVcapacity,anditisaquitere-presentativemetrolineinChina’sbigcities,whichisfeaturedbythelongelevatedsuburbansection.ShanghaiMetroLine11hasanoper-atingmileageofabout82km,startingattheDisneyStationinsoutheastShanghai,crossingthecitycentre,andendingatHuaqiaoStationinnorthwestShanghai.Thecitycentresectionrunsunderground,andthesuburbansectioniselevated.Thereare14elevatedstationsinall,withalengthofapproximately22.5km.ThepossibletracksidePVin-stallationspacecanbetheareabetweenthetrackandthesidebarrier,asshownin

Fig.1

.

ShanghaiislocatedattheforefrontoftheYangtzeRiverDeltainChina,withthecoordinatesof31o14′northlatitudeand121o29′eastlongitude.Ithasanannualsunshineof1665.3handanannualaveragedailyradiationof12317.8kJ/m2

[23,24]

.AccordingtothestudyofZangetal.

[25]

,theyearlyoptimumtiltangleofsolarpanelinShanghaiisα=24.2°.ThespacewhichcanbeusedforplacingthePVpanelforLine11is1.60mwide,andthustheinstallableareaisap-proximately39,500m2forasingleline.SinceURThasuplinkanddownlinklines,thetotalavailableareaisabout79,000m2.Supposetheeffectivepossibleareais80%andtheefficiencyofPVmodulesis15%,thePVcapacitycouldbearound9.48MWp,andtheannualpowergenerationisabout11,840,000kWh.

Table1

showsthedataoftheelevatedsuburbansectionsofURTinShanghaiandBeijingbyDecember2018.Mostofthelineshavelongsuburbanelevatedsections,whicharesuitableforPVinstallation.ItcanbeseenthatsuburbanURTlinesprovideanewplatformfordistributed

3

X.Shen,etal.

Fig.1.PVInstallationdiagramononetracksideofelevatedURTline(a)Thetrackofelevatedline(b)PossiblePVinstallationlocationonthetrackside.

Table1

DataofsomeelevatedsuburbanlinesinShanghaiandBeijing.

City

LineNo.

Length

Numberofelevatedstations

Shanghai

Line5

30km

18

Line8

12Km

4

Line9

12km

4

Line16

50km

10

Line17

17km

6

Beijing

Line5

9km

7

Line13

40km

15

PVpowergenerationsystemandhasgreatapplicationpotentials.

2.2.Returnofinvestment(ROI)oftracksidePVinstallation

ROIisanotherkeyissuetoconsiderinthefeasibilitystudyoftracksidePVinstallationinURTsystem.Theon-gridpriceofPVpowergenerationsetbytheNationalDevelopmentandReformCommissionofChinais1yuan/kWhinShanghai,andtheyearlyrevenuegeneratedbythePVsystemis11,840,000yuanaccordingly.WiththecurrentcostofroofPVinChinabeingabout10,000yuan/kW,theone-timeinvestmentoftracksidePVsysteminthesuburbansectionofLine11willbe94,800,000yuanandtheROIwillbeabout8years.WiththePVcostgettingdownandthepowergenerationefficiencyenhanced

[26]

,thetimecostfortheROIwillbeevenless.AccordingtoJinyueYanetal,

AppliedEnergy260(2020)114177

Citypower

AC110kV

\

Mainsubstation

AC35(33)kV

Step-downsubstation

Tractionsubstation

DC1500V

AC400V

/

+

Train

—-Rail

Fig.2.ThediagramofURTpowersupplystructure.

thesubsidy-freePVelectricitypricecanbeevenachievedinChinawiththedevelopmentofPVtechnology

[27]

.ThetracksidePVinstallationwhichtakesfulladvantageoftheidlespaceoneithersideoftheele-vatedtrackisverypromising.ItwillbringhugeeconomicandsocialbenefitsforacitylikeShanghai.

3.PVpowerintegrationintotheDCtractionpowersystem

3.1.PossiblePVaccesspointsinURTpowersystem

InChina,theinputoftheURTpowersupplysystemisACpowergrid,andtheoutputisDCtractionpowersystem(750Vor1500V)andAClowvoltagesystem(400V).TheDCtractionpowersystemprovidestractionpowertothetrainbyconverting35kVACinputinto750Vor1500VDCoutput;theAClowvoltagesystemprovideslighting,ven-tilationandairconditioningpowertostationsbytransforming35kVACinputinto400VACoutput.

Fig.2

illustratesoneofthetypicalstructuresofURTpowersupplysystem.Theinputisa35kVACvoltagesourcetransformedfromthe110kVACcitypowergrid.TheoutputofURTpowersupplysystemisthe400VACsystemtransformedthroughthestep-downsubstationand1500VDCtractionpowersystemconvertedbythetractionsubstation.

AccordingtothefeatureofURTpowersupplysystem,thepossiblegridconnectionpointsforPVpoweraccessisshownin

Fig.3

.TheACsideaccesspointcanbe35kVor400VACbusandDCsideaccesspointisthe1500VDCbus.

TheACsidePVaccessmodecanberealizedthroughagrid-con-nectedinvertertoensurethattheoutputpowermeetsthevoltageandfrequencyrequirementsoftheACbus

[28,29]

.TheenergymanagementstrategyofACsideaccessisrelativelysimpleandcanrefertotheex-istingresearchfindingsinrelatedfields

[30,31]

.ThedisadvantageofACsideaccessisthatitalwaysneedsaninvertertoensuretheproper

AC110kVGridAC33/35kVAC400V

(1)(2)

transformersACload

transformer

itransformer(3)DCload

DC750/1500V

Fig.3.ThepossiblegridconnectionpointsforPVpoweraccess.

4

X.Shen,etal.AppliedEnergy260(2020)114177

integrationofPVpowerintotheACbus,whichwillintroduceharmonicpollutiontotheoriginalsystemandincreasetheoperationcost.Moreover,ifPVpowerisintegratedintothe35kVACbusandsentbacktotheurbangrid,thebidirectionalpowerflowbetweenthegridandtheURTpowersystemwillcausevoltagefluctuationandincreasetheriskofshort-circuit,whichwillnotonlyaffectthenormaldeploymentofthepowersector,butalsoposesasafetyhazardtotheoperationofrailvehicles

[32]

.

Asmentionedin

Section1

,theDCsidePVaccessmodecanfeedthePVpowerdirectlyintotheDCtractionpowersystemthroughasimpleDC/DCconverter,whichismoreefficientcomparedwithACsideac-cess.SincethePVpowerwillnotbesentbacktotheupperlevelACsystembutabsorbedbythetrains,thepowerqualityandharmonicpollutionissuesarenotsodominant

[33]

.AnotheruniqueadvantageisthattheDCsideaccessmodecanhelptostabilizethevoltagefluctua-tionoftractionpowersystemcausedbythefrequentlyswitchingop-erationmodeofthetrain.Inthefollowingpart,basedonthechar-acteristicsofDCtractionpowersystem,theDCsidePVaccessschemeandenergymanagementstrategyarefullydiscussed.

3.2.CharacteristicsofDCtractionpowersystem

TheDCtractionpowersystemofURTisatime-varyinginteractivesystem.Theuniquefeatureischaracterizedbyitsload—themovingtrain.Thepowerdeliveredtothetrainismainlysuppliedbythetwonearbytractionpowerstations.Whenthetrainismoving,theim-pedancebetweenthetractionpowersubstationandthetrainisalsochanging,andthevoltagedropinthecatenarycannotbeneglected.Meanwhile,thetrainfrequentlyswitchestheworkingmodefromac-celerating,coastingtobraking,whichwillcauseseriousvoltagefluc-tuation.

Fig.4

isaschematicdiagramthetypicalspeedprofileofthemetrotrainbetweentwostationsandthecorrespondingcatenaryvoltagefluctuationunderdifferentworkingmodesofthetrain.Thespeedprofileofthemetrotrainispredefinedbythemetrotraintimetable.‘U0’istheratedcatenaryvoltagewithoutmovingtrain,whichisusuallyaround1500V.ForaDC1500VURTtractionpowersystem,theworkingvoltagefluctuationrangesfrom1000Vto1800V.

Therearethreetypicaloperationstagesforthetrainrunningbe-tweentwostations:stage‘1’istheaccelerationstage,stage‘2’isthecoastingstage,andstage‘3’isthebrakingstage.Instage‘1’,thetrainisaccelerating,andthepowerdemandisincreasing.Themaximumpowerofasingletraincanreachupto4MWorevenhigher,andthecurrenttransmittedthroughthecatenarycanreach3000Aorevenhigher,whichwillcausesignificantcatenaryvoltagedropatthepantograph.In

Fig.4.Typicalspeedprofileoftrainandthecorrespondingcatenaryvoltagefluctuation.

stage‘2’,thetrainiscoasting,andthepowerdemandismuchlesscomparedwithstage‘1’.Inthisstage,thepowerismainlyconsumedbytheconstantlowpowerloadsuchasairconditionandventilationsystem.Therefore,thecurrenttransmittedthroughthecatenarywillbemuchsmallerandthevoltagefluctuationismuchlessaccordingly.Instage‘3’,thetrainisbraking.ItwillfirstregeneratethebrakingenergytothenearbyacceleratingtrainsthroughtheDCcatenaryresultinginthecatenaryvoltagerise.Iftheregenerativevoltageexceedsthethreshold,generallysetas1780V,theon-boardresistorwillbetrig-geredtoconsumetheextrabrakingenergy.

Usually,thebakingenergyofthetrainisabout40%ofthetractiveenergy.However,intheactualworkingscenarioofURT,thebrakingenergycannotbefullyutilizedthroughregenerativebrakingbecausethenearbytrainsmaynotworkinaccelerationmodeorhaveenoughcapacitytoabsorbthebrakingenergy.

3.3.PVaccessschemeandenergymanagementstrategyinDCtraction

powersystem

WiththepurposeofefficientuseofbrakingenergyandsmoothingthevoltagefluctuationofDCtractionpowersystem,aDCsidePVac-cessschemewithESSisproposed,asshownin

Fig.5

.ThePViscon-nectedtotheDCbusandtheESSviaasingleinput,dual-outputDC/DCconverter.TheESSisconnectedtotheDCbusthroughabidirectionalDC/DCconverterwhichenablesdoubledirectionpowerflow.

BasedontheabovePVaccessscheme,abriefDCsideenergyab-sorptionandutilizationconceptisdeveloped,asshownin

Fig.6

.

Inthemorningandeveningpeakhours,theirradiationintensityisweak.Therearemoretrainsinoperationwithalargerpassengerflowvolume.Thetrainisinaheavyloadstate,andthereisagreatdemandforpowerinthetractionstage,whichwillcausealargedropinthecatenaryvoltage.ThePVpowergenerationduringthisperiod,how-ever,isinadequate.Ontheonehand,thesmallPVpowergenerationhaslittlevoltagecompensationeffectinthisperiodoftime,andontheotherhand,thereexistspowerlossinthetransmissionprocess.Therefore,duringthepeakhoursofoperation,thePVpowergenerationsystemdoesnotsupplypowertothecatenarydirectly,butstoresenergyinthestoragesystemtochargetheenergystoragedevice.Thedeviceprovidesstablepowertothegridthroughthestoredenergyinthestoragesystem,whichcompensatesthecatenaryvoltageinatimelymannerandthusensuresthesecurityofthetractionnetwork.Theen-ergymanagementstrategyinmorningandeveningpeakhoursisshownin

Fig.6

(a).

Intheoff-peakhoursduringtheday,theirradiationintensityisusuallystrong.Whenthetractionnetworkvoltageisrelativelylow(correspondingtotheequivalenttractionofthevehicle),thePVmod-ulestransmitpowertothegriddirectlythroughtheDC/DCconverter.Asitdoesnotpassthroughtheenergystoragedevice,theenergylossisreduced.Whenthetractionnetworkvoltageisrelativelyhigh(corre-spondingtotheequivalentregenerativebrakingofthevehicle),thePVsystemchargestheenergystoragedevice,whichthenreleasestheen-ergywhenthetractionnetworkvoltagedropstoacertainvalueto

ESS

DC/DCConverter

DC

DC

DC

DC

PV

Bidirectional

DC/DCConvertor

Traction

Substation

Train1

Tractioncatenary

Trainn

Rail

Fig.5.ADCsidePVaccessschemewithESS.

X.Shen,etal.

Fig.6.SchematicdiagramofDCsideenergymanagementstrategy.(a)PowerflowwhenPVout<PVmin(b)PowerflowwhenPVout>PVmin.

achievebetterenergyefficiency.Inanyoftheabovestagesoratnight,theESSinalsoinvolvedinbrakingenergyrecovery.Theenergyman-agementstrategyintheoff-peakhoursisshownin

Fig.6

(b).

Theenergyabsorptionandutilizationstrategycanbesummarizedasfollows:whentheoutputPVpowerislowerthantheminimumsetthresholdPVmin,itwillbeusedforchargingESS;whentheoutputPVpowerishigherthantheminimumsetthresholdPVmin,andiftheca-tenaryvoltageUnet<Umin(thesetminimumcatenaryvoltagethreshold),bothPVandESSwillsupplypowertothecatenarytofillthevoltagevalleycausedbythetractionofthetrain.IfUnet>Umax(thesetmaximumcatenaryvoltagethreshold),ESSwillabsorbthepowergeneratedbyPVandregenerativebrakingofthetraintoshavethevoltagepeak.IfUmin<Unet<Umax,thePVpowerwillbedelivereddirectlytothecatenarywhichwillhelptoreducetheenergycon-sumptionfromtractionpowerstation.

4.DiscussiononenergysavingeffectofPVpowerintegrationinto

DCtractionpowersystem

4.1.Energysavingrateparameter‘k’

Inordertoevaluatetheenergysavingeffectunderdifferentenergymanagementstrategies,hereweintroduceaparameter‘k’torepresentenergysavingrate.Itcanbecalculatedbythefollowingexpression:

k=

W0−W1

Wpv(1)

whereW0denotestheoriginalenergyconsumptionofthetractionpowersystemofURTwithoutPVintegration,W1denotesthatwithPVintegration,andWpvistheenergygeneratedbythePVsystem.TheenergyconsumptionofthetractionpowersystemofURTiscalculatedbasedonthepowerflowofthetractionpowerstation.Byintroducingthisparameter,wecanhaveaclearjudgementoftheenergysavingeffectunderdifferentPVenergymanagementstrategies.Apparently,thelargerthevalueofk,thebettertheenergysavingeffectachieved.

Inwhatfollows,theenergysavingeffectwithPVintegrationunderdifferentenergymanagementstrategieswillbestudiedthrough

AppliedEnergy260(2020)114177

Table2

Theparametersusedinsimulation.

Tractionsubstationspacing

3km

Tractiondistance(FromItoII)

1.4km

Unitimpedanceofcatenary

34.36e−6O/m

Unitimpedanceofrail

39.5e−6O/m

Systemno-loadvoltage

1500V

Ratedcapacityoftractionstation

8.8MVA

Equivalentinternalresistanceoftractionsubstation

0.05O

Ratedpoweroftrain

4MVA

Maximumtractionspeed

80km/h

Tractionacceleration

0.9m/s2

Brakingdeceleration

–1.0m/s2

theoreticalanalysisandsimulation,andweuseparameter‘k’asanindicatortoevaluatetheenergysavingeffect.

4.2.Energysavinganalysisunderdifferentscenarios

Basedont

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论