




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AppliedEnergy260(2020)114177
Contentslistsavailableat
ScienceDirect
AppliedEnergy
journalhomepage:
/locate/apenergy
Studyoftracksidephotovoltaicpowerintegrationintothetractionpowersystemofsuburbanelevatedurbanrailtransitline
XiaojunShen,HongyangWei,LiWei⁎
DepartmentofElectricalEngineering,TongjiUniversity,Shanghai200092,China
HIGHLIGHTS
.
•TracksidePVpowerintegratedintothetractionpowersystemofurbanrailtransit(URT)isstudied
.
•TracksidePVinstallationinsuburbanelevatedURTLineiseconomicallyfeasibleinShanghai
.
•ADCsidePVintegrationschemeandenergymanagementstrategyhasbeensuggested
.
•SimulationmodelsbasedonthecharacteristicsofURTpowersystemandmovingtrainsaredeveloped
.
•ChallengesandfuturedirectivesforDCsidePVintegrationinURTsystemareoutlined
ARTICLEINFO
ABSTRACT
Keywords:
Urbanrailtransit
DCtractionpowersystemTracksidePV
DCsidePVpowerintegrationEnergystorage
Thetracksideofsuburbanelevatedurbanrailtransit(URT)lineisapotentialplatformforplacingPhotovoltaic(PV)panels.ThispaperhasmadeacomprehensivestudyoftracksidePVpowerintegrationintothedirectcurrent(DC)tractionpowersupplysystemofURT.WiththeelevatedsectionofMetroLine11insuburbanShanghaiasanexample,thepotentialPVinstallationcapacityhasbeenevaluated.BasedontheuniquefeatureoftheDCtractionpowersupplysystem,aDCsidePVintegrationschemeandcontrolstrategyhasbeenpro-posed.ThesimulationmodelsbasedontheelectricalcharacteristicsofURTpowersystemandthemovingtrainhavebeenespeciallydevelopedasaneffectivetooltoperformthescenarioanalysisofdifferentPVintegrationschemes,andanenergysavingparameter“k”hasbeenproposedtoevaluatetheenergysavingeffect.Itcon-cludesthatDCsidePVintegrationcanhelptocompensatethetractionvoltageandreducethecatenarytrans-missionlossinthetractionstageoftrains,therebyithasahigherenergysavingrate.EvenbetterperformancecanbeachievedwithbothPVandenergystoragesystem(ESS)integratedintotheDCtractionpowersystem.Theenergysavingresultcanachievetheeffectof“1+1>2”,whichmeansthetotalamountofenergysavingsisevenlargerthanthesumofPVorESSworkingalone.Moreover,thetractionpowerqualityandsafetywillalsobeimproved.
1.Introduction
URThasbecomethepreferredsolutiontosolvetrafficcongestioninlargeandmedium-sizedcitiesinChinabecauseofbeingfast,safe,punctual,andhavingalargepassengercapacity
[1,2]
.However,itisalsoahugeenergyconsumer.InShanghai,theannualenergycon-sumptionofURTismorethan1.9billionkWh.Theenergyconservationproblemisbecomingincreasinglyprominent
[3]
.
Asakindofrenewableenergy,PVpowergenerationhasnopollu-tionandnonoise,anditisconvenientandflexibletoinstall
[4]
,whichhasbeenwidelyusedinmanyfields
[5,6]
.AnumberofstudieshavebeencarriedoutonPVplants
[7]
,PVgridconnectionsystemsand
controlstrategy
[8,9]
.ItisveryattractivetoinstallPVpanelsinURTsystem.ThefuturedevelopmentofURTurgentlyneedstheintroductionofthisgreen,sustainableandlow-carbontechnology.TherehavebeenalreadysomedemonstrativeprojectsinURT.Singaporehasinstalled1MWofPVsystemontheroofofmetrodepots,whichcanreducecarbonemissionsby500tonsperyear.TheBelgianRailwayCompanyhasbuilta3KMlongPVtunnelwithapowercapacityof3MW.IndianRailwaysinstalledPVmodulesontheroofoftrainstoprovideventi-lation,lighting,andairconditioning
[10]
.Japan’sJRRailwayCom-panyinstalleda453KWPVunitontheroofoftheTokyoplatform,whichisexpectedtogenerate340MWhofelectricityperyearandre-ducecarbonemissionsby101tons
[11]
.ShanghaiShentongMetro
⁎Correspondingauthor.
E-mailaddress:
weili@
(L.Wei).
/10.1016/j.apenergy.2019.114177
Received16April2019;Receivedinrevisedform7November2019;Accepted13November20190306-2619/©2019ElsevierLtd.Allrightsreserved.
2
X.Shen,etal.AppliedEnergy260(2020)114177
CompanyalsostartedconstructionofPVrooffor6.8MWvehicleseg-ment
[12]
.ThosedemonstrativecasesshowthatPVaccesstorailtransitcanachievedirectenergyconsumptionandutilizationoftheterminal,whichnotonlyreducestheoperatingcost,butalsoeffectivelyreducesthepowertransmissionloss,therebyachievingthegoalofgreenlowcarbondevelopmentofURT.Therefore,itisofgreatvaluetostudytheapplicationofPVpowerinURTsystem.
TheintegrationmodeofPVisdeterminedbythecharacteristicofURTpowersupplysystem.TherearetwopossiblePVintegrationmodes:AC(alternativecurrent)sideaccessandDCsideaccess.TheACsideaccessmodeeitherinvertsthePVpowerintothelowvoltagesystem,orfeedsitbacktothepowergrid.TheDCsideaccessmodeconvertsPVpowerintoDCtractionpowersystemandprovidestractionpowertothetraindirectly.
Currently,theACsidePVaccessmode,whichiseasiertoimple-ment,isadoptedbymostoftheabovedemonstrativeprojectsandat-tractsmoreattentionofresearchers.Jinetal.
[13]
expoundedthefeasibilityandenergyefficiencyofPVpowergenerationsysteminURTsystem,andproposedtouselowvoltagesideaccessinelevatedstationstoprovideaprospectforchangingtheenergysupplymodeofURT.AccordingtothecharacteristicsofURTandtheadvantagesofPVsystem,Wangetal.
[14]
putforwardtheapplicationschemeofPVintegrationintheelevatedstation,depotparkinglotandelevatedsection.Pankovitsetal.
[15]
proposeatopologyofPVintegrationintotheURTsystem,whileMengetal.
[16]
proposedtocombineESSwithPVpowergenerationtoachievefulluseofPVenergy.§engöretal.
[17]
proposedarailwaystationenergymanagementsystemmodelcom-posedofPVandESS,indicatingthefuturedevelopmenttrendofURT.Beyhanetal.studiedthefeasibilityofusingPVpowerfortheinteriorlightingoftheurbanrailvehicles
[18]
.
Interestingly,thevoltagegeneratedbyPVpanels,generallyaround600–800VDC,matchescoincidentlywiththeDCtractionvoltage.ItmeansthatthePVpowercouldbeintegrateddirectlyintotheDCtractionpowersystemwithlesspowerlossthroughasimpleDC/DCpowerconverter.Moreover,theDCsidePVaccessmodecanalsoworkwithESSwhichwillnotonlyreduceenergytransmissionloss,butalsohelptostabilizethetractionnetworkvoltage.Nevertheless,therearefewstudiesonDCsideaccessmode.Hayashiyaetal.
[19]
studiedthefeasibilityofusingsmartgridtechnologyforrailtransitpowersupplysystems,andpointedoutthatDCsideaccessmodecanreduceenergyconsumptionandtransmissionloss,butonlythroughestimation.Cic-carellietal.
[20]
exploredthefeasibilityofconnectingPVandsuper-capacitorESStoDCtractionsystems,andanalyzedthePVcost.Sayedetal.
[21]
proposedaDC/DCconvertertopologyofthePVsystemconnectedtotheDCside,butdidnotmakeanin-depthstudyonthePVpowerconsumptionstrategy.Inaddition,Greenetal.
[22]
andthemutationchangecharity10:10areworkingtogetheronthetopologyandcontrolmodeofdirectaccesstothetractionpowersupplysystemusingPVpanelalongbothsidesofthetrack.Sofar,therehasnotbeenanyrelatedreportonDCsideaccessdemonstrativeproject.
ThereareseveralinstallationalternativesofPVpanelinURTwhichcanbethetrainroof,parkinglot,depotroof,soundbarrier,theelevatedplatformroofandthetwosidesofelevatedline.Inthispaper,withelevatedMetroLine11insuburbanShanghaiasanexample,wefocusonthefeasibilityofPVinstallationalongthetracksideofsuburbanelevatedlineastheprobabilityofthisareabeingshadedbytallbuildingsislessthanthatindowntownarea.Basedonthecharacter-isticsofURTpowersupplysystem,acomprehensivestudyismadeofPVintegrationintotheDCtractionpowersystemintermsofpotentialPVinstallationcapacity,possiblePVaccesspoints,energysavingrateandpowerqualityimprovement.Thenoveltyofthispaperissum-marizedasfollows:
(i)FeasibilityandinstallationpotentialoftracksidePVinstallationinsuburbanelevatedlinehasbeenevaluatedwithShanghaiMetroLine11asanexample.
(ii)BasedontheuniqueelectricalcharacteristicsofURTpowersupplysystem,simulationmodelsofURTpowersystemandthemovingtrainhavebeenespeciallydevelopedasaneffectivetooltoperformthescenarioanalysisofdifferentPVintegrationschemes.
(iii)ADCsidePVintegrationschemeandenergymanagementstrategyhasbeenproposed.ScenarioanalysishasbeenperformedtoassesstheenergysavingcharacteristicsofDCsidePVintegration.Anenergysavingrateparameter‘k’hasbeenproposedtoevaluatetheenergysavingeffect.
(iv)ComparativeanalysishasbeenmadeonACandDCsidePVin-tegrationintermsofenergysavingeffect,powersupplyqualityandsafety,andweconcludethatDCsidePVintegrationhasmoreadvantageintermsofenergysavingrateandpowerqualityim-provement.
Thepaperisstructuredasfollows:
Section2
ismainlyaboutthetechnicalandeconomicanalysisofthefeasibilityoftracksidePVin-tegrationbasedonthedataofShanghaiURTLine11.
Section3
dis-cussestheuniquecharacteristicsofURTpowersystem,andabriefDCsidePVintegrationschemeandenergymanagementstrategyhasbeenproposedaccordingly.In
Section4
,theenergysavingeffectanalysisofDCsidePVintegrationhasbeenperformedbasedonsimulation.
Section5
isacomparativeanalysisofACandDCsidePVintegrationintermsofenergysavingeffect,powersupplyqualityandsafety.Thenin
Section6
,thechallengesandfutureopportunitiesaresummarizedandfinally
Section7
summarizesthisresearch.
2.FeasibilityoftracksidePVinstallationinsuburbanelevatedURTline
2.1.PotentialcapacityoftracksidePVinstallation
Inthepasttwodecades,URThasdevelopedrapidlyinChina.AsofApril2019,38citieshaveopenedsubways.Amongthem,ShanghaiMetrohasamileageof705km,rankingthefirstintheworld.ItisnoteworthythattheURTlinesusuallyhavelong,elevatedsectionsinthesuburbsofChina’sbigcities.Thetracksidealongtheelevatedsections,whichisfreeoftheshadingoftallbuildings,canbeusedforPVinstallation.
Inwhatfollows,weuseShanghaiMetroLine11asanexampleandanalysethepotentialofthetracksidePVcapacity,anditisaquitere-presentativemetrolineinChina’sbigcities,whichisfeaturedbythelongelevatedsuburbansection.ShanghaiMetroLine11hasanoper-atingmileageofabout82km,startingattheDisneyStationinsoutheastShanghai,crossingthecitycentre,andendingatHuaqiaoStationinnorthwestShanghai.Thecitycentresectionrunsunderground,andthesuburbansectioniselevated.Thereare14elevatedstationsinall,withalengthofapproximately22.5km.ThepossibletracksidePVin-stallationspacecanbetheareabetweenthetrackandthesidebarrier,asshownin
Fig.1
.
ShanghaiislocatedattheforefrontoftheYangtzeRiverDeltainChina,withthecoordinatesof31o14′northlatitudeand121o29′eastlongitude.Ithasanannualsunshineof1665.3handanannualaveragedailyradiationof12317.8kJ/m2
[23,24]
.AccordingtothestudyofZangetal.
[25]
,theyearlyoptimumtiltangleofsolarpanelinShanghaiisα=24.2°.ThespacewhichcanbeusedforplacingthePVpanelforLine11is1.60mwide,andthustheinstallableareaisap-proximately39,500m2forasingleline.SinceURThasuplinkanddownlinklines,thetotalavailableareaisabout79,000m2.Supposetheeffectivepossibleareais80%andtheefficiencyofPVmodulesis15%,thePVcapacitycouldbearound9.48MWp,andtheannualpowergenerationisabout11,840,000kWh.
Table1
showsthedataoftheelevatedsuburbansectionsofURTinShanghaiandBeijingbyDecember2018.Mostofthelineshavelongsuburbanelevatedsections,whicharesuitableforPVinstallation.ItcanbeseenthatsuburbanURTlinesprovideanewplatformfordistributed
3
X.Shen,etal.
Fig.1.PVInstallationdiagramononetracksideofelevatedURTline(a)Thetrackofelevatedline(b)PossiblePVinstallationlocationonthetrackside.
Table1
DataofsomeelevatedsuburbanlinesinShanghaiandBeijing.
City
LineNo.
Length
Numberofelevatedstations
Shanghai
Line5
30km
18
Line8
12Km
4
Line9
12km
4
Line16
50km
10
Line17
17km
6
Beijing
Line5
9km
7
Line13
40km
15
PVpowergenerationsystemandhasgreatapplicationpotentials.
2.2.Returnofinvestment(ROI)oftracksidePVinstallation
ROIisanotherkeyissuetoconsiderinthefeasibilitystudyoftracksidePVinstallationinURTsystem.Theon-gridpriceofPVpowergenerationsetbytheNationalDevelopmentandReformCommissionofChinais1yuan/kWhinShanghai,andtheyearlyrevenuegeneratedbythePVsystemis11,840,000yuanaccordingly.WiththecurrentcostofroofPVinChinabeingabout10,000yuan/kW,theone-timeinvestmentoftracksidePVsysteminthesuburbansectionofLine11willbe94,800,000yuanandtheROIwillbeabout8years.WiththePVcostgettingdownandthepowergenerationefficiencyenhanced
[26]
,thetimecostfortheROIwillbeevenless.AccordingtoJinyueYanetal,
AppliedEnergy260(2020)114177
Citypower
AC110kV
\
Mainsubstation
AC35(33)kV
Step-downsubstation
Tractionsubstation
DC1500V
AC400V
/
+
Train
—-Rail
Fig.2.ThediagramofURTpowersupplystructure.
thesubsidy-freePVelectricitypricecanbeevenachievedinChinawiththedevelopmentofPVtechnology
[27]
.ThetracksidePVinstallationwhichtakesfulladvantageoftheidlespaceoneithersideoftheele-vatedtrackisverypromising.ItwillbringhugeeconomicandsocialbenefitsforacitylikeShanghai.
3.PVpowerintegrationintotheDCtractionpowersystem
3.1.PossiblePVaccesspointsinURTpowersystem
InChina,theinputoftheURTpowersupplysystemisACpowergrid,andtheoutputisDCtractionpowersystem(750Vor1500V)andAClowvoltagesystem(400V).TheDCtractionpowersystemprovidestractionpowertothetrainbyconverting35kVACinputinto750Vor1500VDCoutput;theAClowvoltagesystemprovideslighting,ven-tilationandairconditioningpowertostationsbytransforming35kVACinputinto400VACoutput.
Fig.2
illustratesoneofthetypicalstructuresofURTpowersupplysystem.Theinputisa35kVACvoltagesourcetransformedfromthe110kVACcitypowergrid.TheoutputofURTpowersupplysystemisthe400VACsystemtransformedthroughthestep-downsubstationand1500VDCtractionpowersystemconvertedbythetractionsubstation.
AccordingtothefeatureofURTpowersupplysystem,thepossiblegridconnectionpointsforPVpoweraccessisshownin
Fig.3
.TheACsideaccesspointcanbe35kVor400VACbusandDCsideaccesspointisthe1500VDCbus.
TheACsidePVaccessmodecanberealizedthroughagrid-con-nectedinvertertoensurethattheoutputpowermeetsthevoltageandfrequencyrequirementsoftheACbus
[28,29]
.TheenergymanagementstrategyofACsideaccessisrelativelysimpleandcanrefertotheex-istingresearchfindingsinrelatedfields
[30,31]
.ThedisadvantageofACsideaccessisthatitalwaysneedsaninvertertoensuretheproper
AC110kVGridAC33/35kVAC400V
(1)(2)
transformersACload
transformer
itransformer(3)DCload
DC750/1500V
Fig.3.ThepossiblegridconnectionpointsforPVpoweraccess.
4
X.Shen,etal.AppliedEnergy260(2020)114177
integrationofPVpowerintotheACbus,whichwillintroduceharmonicpollutiontotheoriginalsystemandincreasetheoperationcost.Moreover,ifPVpowerisintegratedintothe35kVACbusandsentbacktotheurbangrid,thebidirectionalpowerflowbetweenthegridandtheURTpowersystemwillcausevoltagefluctuationandincreasetheriskofshort-circuit,whichwillnotonlyaffectthenormaldeploymentofthepowersector,butalsoposesasafetyhazardtotheoperationofrailvehicles
[32]
.
Asmentionedin
Section1
,theDCsidePVaccessmodecanfeedthePVpowerdirectlyintotheDCtractionpowersystemthroughasimpleDC/DCconverter,whichismoreefficientcomparedwithACsideac-cess.SincethePVpowerwillnotbesentbacktotheupperlevelACsystembutabsorbedbythetrains,thepowerqualityandharmonicpollutionissuesarenotsodominant
[33]
.AnotheruniqueadvantageisthattheDCsideaccessmodecanhelptostabilizethevoltagefluctua-tionoftractionpowersystemcausedbythefrequentlyswitchingop-erationmodeofthetrain.Inthefollowingpart,basedonthechar-acteristicsofDCtractionpowersystem,theDCsidePVaccessschemeandenergymanagementstrategyarefullydiscussed.
3.2.CharacteristicsofDCtractionpowersystem
TheDCtractionpowersystemofURTisatime-varyinginteractivesystem.Theuniquefeatureischaracterizedbyitsload—themovingtrain.Thepowerdeliveredtothetrainismainlysuppliedbythetwonearbytractionpowerstations.Whenthetrainismoving,theim-pedancebetweenthetractionpowersubstationandthetrainisalsochanging,andthevoltagedropinthecatenarycannotbeneglected.Meanwhile,thetrainfrequentlyswitchestheworkingmodefromac-celerating,coastingtobraking,whichwillcauseseriousvoltagefluc-tuation.
Fig.4
isaschematicdiagramthetypicalspeedprofileofthemetrotrainbetweentwostationsandthecorrespondingcatenaryvoltagefluctuationunderdifferentworkingmodesofthetrain.Thespeedprofileofthemetrotrainispredefinedbythemetrotraintimetable.‘U0’istheratedcatenaryvoltagewithoutmovingtrain,whichisusuallyaround1500V.ForaDC1500VURTtractionpowersystem,theworkingvoltagefluctuationrangesfrom1000Vto1800V.
Therearethreetypicaloperationstagesforthetrainrunningbe-tweentwostations:stage‘1’istheaccelerationstage,stage‘2’isthecoastingstage,andstage‘3’isthebrakingstage.Instage‘1’,thetrainisaccelerating,andthepowerdemandisincreasing.Themaximumpowerofasingletraincanreachupto4MWorevenhigher,andthecurrenttransmittedthroughthecatenarycanreach3000Aorevenhigher,whichwillcausesignificantcatenaryvoltagedropatthepantograph.In
Fig.4.Typicalspeedprofileoftrainandthecorrespondingcatenaryvoltagefluctuation.
stage‘2’,thetrainiscoasting,andthepowerdemandismuchlesscomparedwithstage‘1’.Inthisstage,thepowerismainlyconsumedbytheconstantlowpowerloadsuchasairconditionandventilationsystem.Therefore,thecurrenttransmittedthroughthecatenarywillbemuchsmallerandthevoltagefluctuationismuchlessaccordingly.Instage‘3’,thetrainisbraking.ItwillfirstregeneratethebrakingenergytothenearbyacceleratingtrainsthroughtheDCcatenaryresultinginthecatenaryvoltagerise.Iftheregenerativevoltageexceedsthethreshold,generallysetas1780V,theon-boardresistorwillbetrig-geredtoconsumetheextrabrakingenergy.
Usually,thebakingenergyofthetrainisabout40%ofthetractiveenergy.However,intheactualworkingscenarioofURT,thebrakingenergycannotbefullyutilizedthroughregenerativebrakingbecausethenearbytrainsmaynotworkinaccelerationmodeorhaveenoughcapacitytoabsorbthebrakingenergy.
3.3.PVaccessschemeandenergymanagementstrategyinDCtraction
powersystem
WiththepurposeofefficientuseofbrakingenergyandsmoothingthevoltagefluctuationofDCtractionpowersystem,aDCsidePVac-cessschemewithESSisproposed,asshownin
Fig.5
.ThePViscon-nectedtotheDCbusandtheESSviaasingleinput,dual-outputDC/DCconverter.TheESSisconnectedtotheDCbusthroughabidirectionalDC/DCconverterwhichenablesdoubledirectionpowerflow.
BasedontheabovePVaccessscheme,abriefDCsideenergyab-sorptionandutilizationconceptisdeveloped,asshownin
Fig.6
.
Inthemorningandeveningpeakhours,theirradiationintensityisweak.Therearemoretrainsinoperationwithalargerpassengerflowvolume.Thetrainisinaheavyloadstate,andthereisagreatdemandforpowerinthetractionstage,whichwillcausealargedropinthecatenaryvoltage.ThePVpowergenerationduringthisperiod,how-ever,isinadequate.Ontheonehand,thesmallPVpowergenerationhaslittlevoltagecompensationeffectinthisperiodoftime,andontheotherhand,thereexistspowerlossinthetransmissionprocess.Therefore,duringthepeakhoursofoperation,thePVpowergenerationsystemdoesnotsupplypowertothecatenarydirectly,butstoresenergyinthestoragesystemtochargetheenergystoragedevice.Thedeviceprovidesstablepowertothegridthroughthestoredenergyinthestoragesystem,whichcompensatesthecatenaryvoltageinatimelymannerandthusensuresthesecurityofthetractionnetwork.Theen-ergymanagementstrategyinmorningandeveningpeakhoursisshownin
Fig.6
(a).
Intheoff-peakhoursduringtheday,theirradiationintensityisusuallystrong.Whenthetractionnetworkvoltageisrelativelylow(correspondingtotheequivalenttractionofthevehicle),thePVmod-ulestransmitpowertothegriddirectlythroughtheDC/DCconverter.Asitdoesnotpassthroughtheenergystoragedevice,theenergylossisreduced.Whenthetractionnetworkvoltageisrelativelyhigh(corre-spondingtotheequivalentregenerativebrakingofthevehicle),thePVsystemchargestheenergystoragedevice,whichthenreleasestheen-ergywhenthetractionnetworkvoltagedropstoacertainvalueto
ESS
DC/DCConverter
DC
DC
DC
DC
PV
Bidirectional
DC/DCConvertor
Traction
Substation
Train1
Tractioncatenary
Trainn
Rail
Fig.5.ADCsidePVaccessschemewithESS.
X.Shen,etal.
Fig.6.SchematicdiagramofDCsideenergymanagementstrategy.(a)PowerflowwhenPVout<PVmin(b)PowerflowwhenPVout>PVmin.
achievebetterenergyefficiency.Inanyoftheabovestagesoratnight,theESSinalsoinvolvedinbrakingenergyrecovery.Theenergyman-agementstrategyintheoff-peakhoursisshownin
Fig.6
(b).
Theenergyabsorptionandutilizationstrategycanbesummarizedasfollows:whentheoutputPVpowerislowerthantheminimumsetthresholdPVmin,itwillbeusedforchargingESS;whentheoutputPVpowerishigherthantheminimumsetthresholdPVmin,andiftheca-tenaryvoltageUnet<Umin(thesetminimumcatenaryvoltagethreshold),bothPVandESSwillsupplypowertothecatenarytofillthevoltagevalleycausedbythetractionofthetrain.IfUnet>Umax(thesetmaximumcatenaryvoltagethreshold),ESSwillabsorbthepowergeneratedbyPVandregenerativebrakingofthetraintoshavethevoltagepeak.IfUmin<Unet<Umax,thePVpowerwillbedelivereddirectlytothecatenarywhichwillhelptoreducetheenergycon-sumptionfromtractionpowerstation.
4.DiscussiononenergysavingeffectofPVpowerintegrationinto
DCtractionpowersystem
4.1.Energysavingrateparameter‘k’
Inordertoevaluatetheenergysavingeffectunderdifferentenergymanagementstrategies,hereweintroduceaparameter‘k’torepresentenergysavingrate.Itcanbecalculatedbythefollowingexpression:
k=
W0−W1
Wpv(1)
whereW0denotestheoriginalenergyconsumptionofthetractionpowersystemofURTwithoutPVintegration,W1denotesthatwithPVintegration,andWpvistheenergygeneratedbythePVsystem.TheenergyconsumptionofthetractionpowersystemofURTiscalculatedbasedonthepowerflowofthetractionpowerstation.Byintroducingthisparameter,wecanhaveaclearjudgementoftheenergysavingeffectunderdifferentPVenergymanagementstrategies.Apparently,thelargerthevalueofk,thebettertheenergysavingeffectachieved.
Inwhatfollows,theenergysavingeffectwithPVintegrationunderdifferentenergymanagementstrategieswillbestudiedthrough
AppliedEnergy260(2020)114177
Table2
Theparametersusedinsimulation.
Tractionsubstationspacing
3km
Tractiondistance(FromItoII)
1.4km
Unitimpedanceofcatenary
34.36e−6O/m
Unitimpedanceofrail
39.5e−6O/m
Systemno-loadvoltage
1500V
Ratedcapacityoftractionstation
8.8MVA
Equivalentinternalresistanceoftractionsubstation
0.05O
Ratedpoweroftrain
4MVA
Maximumtractionspeed
80km/h
Tractionacceleration
0.9m/s2
Brakingdeceleration
–1.0m/s2
theoreticalanalysisandsimulation,andweuseparameter‘k’asanindicatortoevaluatetheenergysavingeffect.
4.2.Energysavinganalysisunderdifferentscenarios
Basedont
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024江苏省公务员考试【申论 A卷、C卷】+2023年【申论B卷】共 3套 真题及答案
- 2025年石头汤考试试题及答案
- 5年级下册英语书单词
- 5年级上册题目
- 登记注册 标准化建设思路
- 地下施工工艺流程
- 不同材料短时记忆保持量的实验报告 - 副本 - 副本
- 2025年陕西青年职业学院单招职业技能考试题库审定版
- 2025年深圳信息职业技术学院单招职业倾向性测试题库完整版
- 2025年关于纪念抗日战争胜利72周年的调查报告
- 《民航地面服务与管理》项目二
- 部编版七年级道德与法治上册第一单元复习教案
- 压力管道安全风险管控清单格式
- 华中师范大学矢量logo课件
- 培训绩效管理与绩效评价课件
- 输血相关制度及流程-课件
- DGT252-2021农机播种作业监测终端
- 抽水蓄能式水电站机组巡检维护保养与安全管理方案
- 《中华民族一家亲》评课
- 新能源汽车技术专业教学资源库申报书
- (投标书范本)聘请常年法律顾问项目投标书
评论
0/150
提交评论