基于生命周期评价的热再生沥青路面环境效益分析(英文版)_第1页
基于生命周期评价的热再生沥青路面环境效益分析(英文版)_第2页
基于生命周期评价的热再生沥青路面环境效益分析(英文版)_第3页
基于生命周期评价的热再生沥青路面环境效益分析(英文版)_第4页
基于生命周期评价的热再生沥青路面环境效益分析(英文版)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IOPConferenceSeries:Earthand

EnvironmentalScience

PAPER•OPENACCESS

EnvironmentalBenefitAnalysisofHotCentral

PlantRecyclingAsphaltPavementBasedonLCA

Tocitethisarticle:DLZhuetal2021IOPConf.Ser.:EarthEnviron.Sci.766012101

Viewthe

articleonline

forupdatesandenhancements.

Youmayalsolike

-

Themicrostructureandevaluationindexof

reclaimedasphaltpavement

NingShi

-

Sustainabilityofusingreclaimedasphalt

pavement:based-reviewedevidence

MEnieb,MohammedAbbasHasanAl-

Jumaili,HamidAthabEedanAl-Jameeletal.

-

Thereinforcementandhealingofasphalt

masticmixturesbyrejuvenator

encapsulationinalginatecompartmented

fibres

ATabakovi,WPost,DCanteroetal.

ThiscontentwasdownloadedfromIPaddress

70

on17/12/2024at08:50

IWRED2021IOPPublishing

IOPConf.Series:EarthandEnvironmentalScience766(2021)012101doi:10.1088/1755-1315/766/1/012101

EnvironmentalBenefitAnalysisofHotCentralPlantRecyclingAsphaltPavementBasedonLCA

DLZhu1,2,JWang1,LXGu1

1SchoolofCivilEngineering,CentralSouthUniversity,HunanProvince,China,410075

2Email:1203170206@Telephone/p>

Abstract.Inordertodeterminetheenergy-savingandemission-reductioneffectsoftheapplicationofhotcentralplantrecyclinginthehighwayasphaltpavementmaintenanceproject,thisstudyselectsaroadsectionofoverhaulprojectinTongrenastheanalysisobject,andadopttheenvironmentalbenefitanalysismethodbasedonlifecycleassessmenttoanalyzetheenergyconsumptionandenvironmentalemissionsofhotcentralplantrecyclingandhotmixasphalt.Thecomparisonshowsthattheapplicationofhotcentralplantrecyclinginhighwayasphaltpavementmaintenanceprojecthasgoodenergysavingandemissionreductionbenefits,andtheaggregateandasphaltproductionstagearethemaincomponents.Moreover,undertheconditionofensuringtheroadperformanceofrecycledpavement,withtheincreasingproportionofreclaimedasphaltpavement,theenvironmentalbenefitofrecycledpavementishigher.Whilewiththeincreaseofreclaimedasphaltpavementtransportationdistance,theenvironmentalbenefitpresentsadownwardtrend.

1.Introduction

Thetransportationsectorgreatlyinfluencethesustainabledevelopmentofasociety,contributingtoairpollutionfromvehicularemissions,globalwarming,consumptionofenergyresources,disturbanceofnaturalspacefrominfrastructureconstruction,andnoisepollution[1].Intherecent40years,highwayconstructionhasmadesignificantprogressinChina.AccordingtothestatisticsofMinistryofTransportofthePeople’sRepublicofChina,bytheendof2019,thetotalmileageofChina’sroadsreached5.0125millionkilometers.Amongthem,themileageofhighwaysis149,600kilometers[2].Astimepassed,thehighwaycompletedearlyhasenteredtherepairstagesuccessively,andtheamountofreclaimedasphaltpavement(RAP)producedinpavementmaintenanceengineeringisalsoincreasing.

RAPisamixture,includingagedasphaltbinderandaggregatesproducedbyrecyclinghotmixasphalt(HMA)knownasthemostcommonrecycledmaterialsusedinflexiblepavements[3].Thehigh-pricedoriginalbindercanbereplacedwithRAPasaless-costlybindertoprepareeco-friendlypavements[4].Forexample,usingRAPaswastematerialinpavementstructuredecreasetheemissionofgreenhousegasintotheatmosphereleadingtoimprovementintheenvironmenthealth[5-6].Inordertoreduceenvironmentalburdenassociatedwithasphaltbinder,anumberofsustainablestrategieshavebeendevelopedandusedinthepavingindustryovertheyears,includingwarm-mixasphalt(WMA)andpartialreplacementofasphaltbinderwithbio-binderorotherindustrybyproduct[7-8].Currently,HMAiswidelyusedassurfacematerialforroadway,airfield,tunnel,andbridgedeck[9].However,thereisalackofaccurateandcomprehensivequantitativeevaluationofhowenergyuseandgreenhousegasemissionareimpactedbytheuseofrecycledmaterials[10].

Lifecycleassessment(LCA)providesacomprehensiveandholisticplatformforenvironmentalassessmentofsustainablepractices.Itcanbeusedtoquantifyenvironmentalimpactofvariousstages

ContentfromthisworkmaybeusedunderthetermsoftheCreativeCommonsAttribution3.0licence.Anyfurtherdistributionofthisworkmustmaintainattributiontotheauthor(s)andthetitleofthework,journalcitationandDOI.

PublishedunderlicencebyIOPPublishingLtd1

IWRED2021IOPPublishing

2

IOPConf.Series:EarthandEnvironmentalScience766(2021)012101doi:10.1088/1755-1315/766/1/012101

inthepavement’slifecycle,includingmaterialacquisition,plantproduction,transportation,constructionandmaintenance,usage,andend-of-life.TheLCAmethodhasbeenextensivelyusedindifferentstudiestoassessmentenvironmentalimpactofpavements[9]149-150.MostofthesestudiesfocusonusingLCAmethodtoquantifytheGHG(greenhousegas)emissionofasphaltpavementinusagestage[11];comparetheenergyconsumptionandGHGemissionofdifferentmaintenanceactivitiesthatsignificantlyaffectoptionsbetweenasphaltandconcrete[12];evaluatelife-cycleenvironmentalandeconomicimpactsofflexiblepavementswithvaryingamountsofRAPfrom8%to50%[13];analyzeenvironmentalsustainabilityofthreeasphaltpavementsatallstagesfromrawmaterialstotheendofservicelife[14];quantifyGHGemissionfromasphaltpavementscontainingrecycledasphaltpavementsfromatimeperspective[9].AlthoughanumberofstudieshaveusedLCAtoanalyzeenvironmentalimpactofusingRAPinasphaltmixture,previousstudiesneglectedtheenvironmentalimpactoftheacquisitionprocessofRAP(millingfromoldpavement),transportationofRAPtoprocessingplant,andthereprocessingorpretreatmentofRAPinprocessingplant.

Thus,thestudyisbasedontheexistingresearchresults,fullyconsideringtheenergyconsumptionandGHGemissionimpactsatallstagesinthepavement’slifecycle.Andthen,combinedwiththerealproject,comparethelifecycleenergyconsumptionandenvironmentalemissionsofhotcentralplantrecycling(HCPR)andHMA,showingthepositivesignificanceofHCPRinpracticingtheconceptofecologicalandenvironmentalprotection.

2.Researchmethodology

2.1.GoalandscopeofLCA

HCPRreferstothetechnologyof“crushingandscreeningRAPinthemixingplant,heatingandmixingitwithnewmineralmaterial,newasphaltandasphaltregenerantinacertainproportiontoformasphaltpavement”[15].Thisstudyusesprocess-basedLCAmethodofHCPRistoquantifytheenergyconsumptionandenvironmentalemissionsofRAPmillingrecovery,rawmaterialproduction,asphaltmixtureproductionandpavementconstructionstages,evaluateitsimpactonresourcedestructionandecologicalenvironment.ThesystemboundaryoftheLCAofHCPRisshowninFigure1.

Figure1.BoundaryoflifecycleassessmentsystemforHCPR

2.2.Energyconsumptioninventoryanalysis

Lifecycleenergyconsumptioninventoryanalysismethodsmainlyincludemeasurementmethod,theoreticalmethodandquotamethod,amongwhichquotamethodintegratesthecharacteristicsofmeasurementmethodandtheoreticalmethod,andisthemostcommonlyusedandeffectiveenergyconsumptioncalculationmethod[16].Ittakesthespecificmechanicalequipment,operatingvehicleparametersandusefrequencywithinthequotascopeasthecore,whichcanreflecttheconstructionprocessandenergyconsumptionlevelunderthesocialaveragelevel.Firstly,determinethenumberofmechanicalshiftsperunitoutputaccordingtothetechnologicalprocessspecifiedintheBudgetQuota

IWRED2021IOPPublishing

3

IOPConf.Series:EarthandEnvironmentalScience766(2021)012101doi:10.1088/1755-1315/766/1/012101

ofHighwayMaintenanceProjectandCostQuotaofMachineShiftforHighwayMaintenanceEngineeringofaprovince;secondly,basingontheenergyconsumptionparametersofmachineshiftandnetcalorificvalue(NCV)(obtainedfromthestatisticalresultsreleasedbyIntergovernmentalPanelonClimateChange),tocalculatetheenergyconsumptionofeachstagebyusingformula(1);finally,thetotalenergyconsumptionoftheproductionunitofrecycledmixtureiscalculatedbysummation.

E=Σ(Qi.Ncvi)(1)

Intheformula:Qiistheunitfuelconsumption(kg)oftypeimechanicalequipment;NCViisthenetcalorificvalue(MJ/kg)ofthefuelusedforthecorrespondingmechanicalequipment.

2.3.Environmentalemissioninventoryanalysis

ThecalculationoftheemissionsofGHGandtheenvironmentalimpactsbytheminthewholelifecycleofHCPRisrelativelycomplicated.ThecalculationgenerallyusestheenvironmentalemissioninventoryanalysismethodbasedonIPCCemissionfactormethodwithstrongapplicabilityandsimpleform:firstofall,onthepremiseofdeterminingthedefaultemissionfactors(asshowninTable1)ofcommonfuelcombustionundertheassumptionof100%oxidationoffuel,tocalculatetheemissionsofvarioussubstances;second,determinethecharacteristicfactorofeachimpactfactor(asshowninTable2);finally,calculatethetotalamountofvariousenvironmentalemissionsofeachstagethroughformula(2).

EP=Σ(Qi.EFi)(2)Intheformula:EPisthetotalcharacteristicemissionoftheenvironmentalimpactofglobalwarming;

Qiistheemissionamountoftypeimaterial;EFiisthecharacteristicfactoroftheiemission.

Table1.Defaultemissionfactoroffuelcombustionbasedonnetcalorificvalue(mg/MJ)

NetCalorific

FuelTypeValue(MJ/Kg)[17]CO2CH4N2O

DieselOil43.074100.003.000.60

HeavyOil40.477400.003.000.60

Table2.Impactfactorandcharacteristicfactor

ImpactFactor

CharacteristicFactorUnit

CharacteristicFactor

CO2CH4N2O

kgequivalentCO2

1.0025.00298.00

Thedatasourcesoflifecycleenergyconsumptionandenvironmentalemissioninventorywereobtainedfromtheonlinedatabaseofbudgetquotaofhighwaymaintenanceengineering,costquotaofmachineshift,peer-reviewedjournal,conferencepapers,andreportspublishedbygovernmentagenciesoracademicinstitutionsthatmetcriteriaforqualityandrelevance.

3.Casestudyofasphaltpavement

OverhaulprojectofaroadsectionofprovincialhighwayS303inTongren,10kilometerslong,isatypicalsectionofmountainoushighwayinGuizhouProvince.Thedesignspeedoftheroadsectionis20km/h,thewidthofthesubgradeis6.5m.Thedistancefromthemaintenancesectiontotheprocessingplantis50kilometers,thedistancetotheasphaltmixingplantis50kilometers,andthedistancetothespoilgroundis75kilometers.Theoriginalpavementstructureis4cmthickAC-13ordinaryasphaltconcretesurfacelayer,15cmthickgradedgravelbaselayer,andthemaindiseasesoftheoriginalpavementarenetworkcracking,longitudinalcracking,transversecracking,anddeformation,etc.Afterpavementmaintenance,thesurfacecourseis4cmthickAC-13plantmixedhotrecycledmixture,andthebasecourseis15cmthickgradedgravel.TheAC-13plantmixedhotrecycledasphaltmixturecontains3.41%asphaltbinder(30%RAP,thecontentofasphaltinRAPis4.5%),67.55%aggregate,and0.09%asphaltregenerant.

IWRED2021IOPPublishing

4

IOPConf.Series:EarthandEnvironmentalScience766(2021)012101doi:10.1088/1755-1315/766/1/012101

4.Resultsanddiscussion

4.1.Quantitativeanalysisofenergyconsumption

TheLCAofHCPRincludesfourstages:RAPmillingrecovery,rawmaterialsproduction,asphaltmixtureproductionandpavementconstruction.Theenergyconsumptionandenvironmentalemissionofeachstagemainlycomefromthecombustionofdiesel,heavyoilandotherfuelsandpowerconsumptionofrelevantmechanicalequipment.Basedonthis,theconsumptionandemissionateachstageofpaving1tonofAC-13plantmixedhotrecycledasphaltmixtureiscalculatedbysubstitutingtheinventoryanalysisformula(1)and(2).InordertofullyunderstandtheenergyconsumptiondifferencebetweenHCPRandHMA,theenvironmentalemissionsofAC-13asphaltmixtureineachstageofitslifecyclearecalculatedinthesameway,soastoevaluatetheenergysavingandemission

reductioneffectofHCPRreasonablyandobjectively(asshowninFigure2).

Figure2.LifecycleenergyconsumptionbenefitofHCPR(MJ/ton)

Accordingtotheabovequantitativeanalysisresults,thetotalenergyconsumptionofHCPRis643.95MJ/ton.Comparedwiththe741.67MJ/tonconsumedbyHMA,thetotalenergyconsumptionissavedby97.72MJ/ton,andtheenergysavingratiois13.2%.Thisisreflectedin:(1)duetotheshorteningofRAPtransportationdistance,theenergyconsumptionofRAPmillingrecoverystageisreducedby28.02MJ/ton;(2)withtheadditionofRAP,13.53kgofasphaltand276.89kgofnewaggregatecanbesavedforeachtonofHCPRmixture,savingatotalof75.56MJ/tonofenergyconsumption,inwhichtheenergyconsumptionofnewasphaltproductionstageaccountsforthelargestproportion.

4.2.Quantitativeanalysisofenvironmentalemissions

Basedontheenergyconsumptioncalculationresultsofeachstage,combinedwiththedefaultemissionfactorsofdiesel,heavyoil,andelectricpowerandthecharacteristicfactorofeachemissionfactor,substitutingintoequation(2),tocalculatethetotalenvironmentalemissionsateachstageofthelifecycleofAC-13HCPRandHMA(thecalculationresultsareshowninTable3).TheresultsshowthatthetotalenvironmentalemissionsofHCPRare41348.10gequivalentCO2.ComparedwithHMA,theemissionisreducedrespectively4426.39gequivalentCO2,andtheemissionreductionratiois9.97%,whichisduetotheshorteningofRAPtransportationdistanceandthesavingofasphaltandaggregateaswell.

Table3.LifecycleenvironmentalemissionbenefitofHCPR(g/ton)

Type

RAPMillingRecovery

MaterialsProduction

Mixture

Production

Pavement

Construction

InTotal

HCPR

7868.93

6624.92

17480.38

7978.11

39952.34

HMA

9927.25

9276.64

17196.74

7978.11

44378.73

Benefits

2058.32

2651.71

-283.64

0.00

4426.39

4.3.EffectsofRAPcontentandtransportdistance

InordertoclearlyquantifytheenergysavingandemissionreductioneffectofRAPwithdifferent

IWRED2021IOPPublishing

5

IOPConf.Series:EarthandEnvironmentalScience766(2021)012101doi:10.1088/1755-1315/766/1/012101

proportiononHCPR,thisstudycalculatetheenergyconsumptionandenvironmentalemissionswithdifferentRAPpercentages(variedfrom10%to50%).TheresultsinTable4clearlyshowthatthehighertheRAPcontentis,thelesstheenergyconsumptionandenvironmentalemissionsare,andthebenefitsofenergysavingandemissionreductionaregraduallyincreasing.However,withtheintroductionofRAP,asphaltpavementmighthavethestrongertendencytowarddeterioration,ismoresusceptibletofatigue,longitudinalcracking,andtransversecracking[18],resultingintheshorterservicelifethanasphaltpavementwithvirginmaterials[9]153.Thus,inordertoachievetheeffectofenergysavingandemissionreduction,RAPcannotbeblindlyincreased.

Table4.InfluenceofRAPblendingratioonenvironmentalbenefits

RAPPercentages

Energy

Energy

Environmental

Emission

(%)

Consumption(MJ/ton)

Saving(%)

Emissions(g/ton)

Reduction(%)

10%

690.42

6.91%

41531.86

6.41%

20%

667.19

10.04%

40742.50

8.19%

30%

643.95

13.18%

39952.34

9.97%

40%

620.70

16.31%

39161.38

11.76%

50%

597.44

19.45%

38369.64

13.54%

Tomakeupfortheexistingresearchgaps,understandtheenvironmentalburdenofRAPtransportationstage,thisstudyconsiderstheenvironmentalbenefitsofdifferentdistancesfromtheprocessingplanttotheconstructionsite.ItisworthnotedthatthedatainFigure3showsthatwiththeincreaseoftransportationdistance,theenvironmentalbenefitsbroughtbyRAPwillbecontinuouslyoffset.Whenthetransportationdistanceistoolong(over70kilometers),theenvironmentalbenefitswillbenegative,whichshowstheimportanceofstrictlycontrollingthetransportationdistanceofRAPandrecycledasphaltmixture.

Figure3.Influenceoftransportationdistance

(fromprocessingplanttomaintenancesection)onenvironmentalbenefits

5.Conclusions

ThestudyproposestousequotadatatocalculatetheenvironmentalbenefitsofRAPmillingandtransportation,whichsolvestheresearchgapthatlacksconsiderationofenergyconsumptionandenvironmentalemissionsduringRAPtransportationstage.ThecasestudyhasshownthattheapplicationofHCPRcaneffectivelyimprovetheenergy-savingandemission-reductioneffectsofRAPmillingandrecycling,recycledmixtureproductionandrecycledroadpaving.AndasRAPcontentincreases,theenvironmentalbenefitsincreaseaccordingly.However,withtheincreaseofRAPtransportationdistance,theenvironmentalbenefitsofRAPwillcontinuetodecrease,andmayevenappearnegative.Therefore,itisnecessarytopayattentiontoimprovetheproportionofRAP,shortenthedistancebetweenprocessingplantandmaintenancesection,soastofurtherreducetheenergyconsumptionofHCPR.

Acknowledgments

ThestudyissupportedbytechnicalprojectofGuizhouProvincialDepartmentofTransportation(NO.2020-123-030).

IWRED2021IOPPublishing

6

IOPConf.Series:EarthandEnvironmentalScience766(2021)012101doi:10.1088/1755-1315/766/1/012101

References

[1]BoschmannEE.KwanM.Towardsociallysustainableurbantransportation:Progressandpotentials.InternationalJournalofSustainableTransportation,2008,2:138-157.

[2]MinistryofTransportofthePeople’sRepublicofChina.Statisticalbulletinonthedevelopmentoftransportationindustryin2019[EB/OL].(2020-05-12)[2021-01-12].

/jigou/zhghs/202005/t20200512

_3374322.html.

[3]HamidJ,MohammadM.K,HamedN,etal.Sustainableasphaltconcretecontaininghighreclaimedasphaltpavementsandrecyclingagents:performanceassessment,costanalysis,andenvironmentalimpact[J].JournalofCleanerProduction,2019.DOI:10.1016/j.jclepro.2019.118837

[4]Zhang,Kun,andBalasingamMuhunthan.Effectsofproductionstagesonblendingandmechanicalpropertiesofasphaltmixtureswithreclaimedasphaltpavement[J].ConstructionandBuildingMaterials,2017,149:679-689.DOI:10.1016/j.conbuildmat.2017.05.190.

[5]Chen,Xiaodan,andHaoWang.Lifecycleassessmentofasphaltpavementrecyclingforgreenhousegasemissionwithtemporalaspect[J].JournalofCleanerProduction,2018,187:148157.

[6]Xiao,Feipeng,etal.Performancegrades,environmentalandeconomicinvestigationsofreclaimedasphaltpavementmaterials[J].JournalofCleanerProduction.2019,211:1299-1312.

[7]Chen,M.Z.,B.B.Leng,S.P.Wu,an

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论