CSET:人工智能生成代码的网络安全风险(英文)_第1页
CSET:人工智能生成代码的网络安全风险(英文)_第2页
CSET:人工智能生成代码的网络安全风险(英文)_第3页
CSET:人工智能生成代码的网络安全风险(英文)_第4页
CSET:人工智能生成代码的网络安全风险(英文)_第5页
已阅读5页,还剩76页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ExecutiveSummary

Recentdevelopmentshaveimprovedtheabilityoflargelanguagemodels(LLMs)andotherAIsystemstogeneratecomputercode.Whilethisispromisingforthefieldof

softwaredevelopment,thesemodelscanalsoposedirectandindirectcybersecurity

risks.Inthispaper,weidentifythreebroadcategoriesofriskassociatedwithAIcodegenerationmodels:1)modelsgeneratinginsecurecode,2)modelsthemselvesbeingvulnerabletoattackandmanipulation,and3)downstreamcybersecurityimpactssuchasfeedbackloopsintrainingfutureAIsystems.

Existingresearchhasshownthat,underexperimentalconditions,AIcodegenerationmodelsfrequentlyoutputinsecurecode.However,theprocessofevaluatingthe

securityofAI-generatedcodeishighlycomplexandcontainsmanyinterdependentvariables.TofurtherexploretheriskofinsecureAI-writtencode,weevaluated

generatedcodefromfiveLLMs.Eachmodelwasgiventhesamesetofprompts,whichweredesignedtotestlikelyscenarioswherebuggyorinsecurecodemightbe

produced.Ourevaluationresultsshowthatalmosthalfofthecodesnippetsproducedbythesefivedifferentmodelscontainbugsthatareoftenimpactfulandcould

potentiallyleadtomaliciousexploitation.Theseresultsarelimitedtothenarrowscopeofourevaluation,butwehopetheycancontributetothelargerbodyofresearch

surroundingtheimpactsofAIcodegenerationmodels.

Givenbothcodegenerationmodels’currentutilityandthelikelihoodthattheircapabilitieswillcontinuetoimprove,itisimportanttomanagetheirpolicyandcybersecurityimplications.Keyfindingsincludethebelow.

●IndustryadoptionofAIcodegenerationmodelsmayposeriskstosoftware

supplychainsecurity.However,theseriskswillnotbeevenlydistributedacrossorganizations.Larger,morewell-resourcedorganizationswillhaveanadvantageoverorganizationsthatfacecostandworkforceconstraints.

●Multiplestakeholdershaverolestoplayinhelpingtomitigatepotentialsecurity

risksrelatedtoAI-generatedcode.TheburdenofensuringthatAI-generated

codeoutputsaresecureshouldnotrestsolelyonindividualusers,butalsoonAIdevelopers,organizationsproducingcodeatscale,andthosewhocanimprove

securityatlarge,suchaspolicymakingbodiesorindustryleaders.Existing

guidancesuchassecuresoftwaredevelopmentpracticesandtheNIST

CybersecurityFrameworkremainsessentialtoensurethatallcode,regardlessofauthorship,isevaluatedforsecuritybeforeitentersproduction.Other

cybersecurityguidance,suchassecure-by-designprinciples,canbeexpandedto

CenterforSecurityandEmergingTechnology|1

includecodegenerationmodelsandotherAIsystemsthatimpactsoftwaresupplychainsecurity.

●Codegenerationmodelsalsoneedtobeevaluatedforsecurity,butitiscurrentlydifficulttodoso.Evaluationbenchmarksforcodegenerationmodelsoftenfocusonthemodels’abilitytoproducefunctionalcodebutdonotassesstheirabilitytogeneratesecurecode,whichmayincentivizeadeprioritizationofsecurityover

functionalityduringmodeltraining.Thereisinadequatetransparencyaround

models’trainingdata—orunderstandingoftheirinternalworkings—toexplorequestionssuchaswhetherbetterperformingmodelsproducemoreinsecure

code.

CenterforSecurityandEmergingTechnology|2

TableofContents

ExecutiveSummary 1

Introduction 4

Background 5

WhatAreCodeGenerationModels? 5

IncreasingIndustryAdoptionofAICodeGenerationTools 7

RisksAssociatedwithAICodeGeneration 9

CodeGenerationModelsProduceInsecureCode 9

Models’VulnerabilitytoAttack 11

DownstreamImpacts 13

ChallengesinAssessingtheSecurityofCodeGenerationModels 15

IsAIGeneratedCodeInsecure? 18

Methodology 18

EvaluationResults 22

UnsuccessfulVerificationRates 22

VariationAcrossModels 24

SeverityofGeneratedBugs 25

Limitations 26

PolicyImplicationsandFurtherResearch 28

Conclusion 32

Authors 33

Acknowledgments 33

AppendixA:Methodology 34

AppendixB:EvaluationResults 34

Endnotes 35

CenterforSecurityandEmergingTechnology|3

Introduction

AdvancementsinartificialintelligencehaveresultedinaleapintheabilityofAI

systemstogeneratefunctionalcomputercode.Whileimprovementsinlargelanguage

modelshavedrivenagreatdealofrecentinterestandinvestmentinAI,codegenerationhasbeenaviableusecaseforAIsystemsforthelastseveralyears.

SpecializedAIcodingmodels,suchascodeinfillingmodelswhichfunctionsimilarlyto“autocompleteforcode,”and“general-purpose”LLM-basedfoundationmodelsare

bothbeingusedtogeneratecodetoday.Anincreasingnumberofapplicationsand

softwaredevelopmenttoolshaveincorporatedthesemodelstobeofferedasproductseasilyaccessiblebyabroadaudience.

Thesemodelsandassociatedtoolsarebeingadoptedrapidlybythesoftware

developercommunityandindividualusers.AccordingtoGitHub’sJune2023survey,92%ofsurveyedU.S.-baseddevelopersreportusingAIcodingtoolsinandoutof

work.1AnotherindustrysurveyfromNovember2023similarlyreportedahighusagerate,with96%ofsurveyeddevelopersusingAIcodingtoolsandmorethanhalfof

respondentsusingthetoolsmostofthetime.2Ifthistrendcontinues,LLM-generatedcodewillbecomeanintegralpartofthesoftwaresupplychain.

ThepolicychallengeregardingAIcodegenerationisthatthistechnological

advancementpresentstangiblebenefitsbutalsopotentialsystemicrisksforthe

cybersecurityecosystem.Ontheonehand,thesemodelscouldsignificantlyincreaseworkforceproductivityandpositivelycontributetocybersecurityifappliedinareas

suchasvulnerabilitydiscoveryandpatching.Ontheotherhand,researchhasshownthatthesemodelsalsogenerateinsecurecode,posingdirectcybersecurityrisksif

incorporatedwithoutproperreview,aswellasindirectrisksasinsecurecodeendsupinopen-sourcerepositoriesthatfeedintosubsequentmodels.

Asdevelopersincreasinglyadoptthesetools,stakeholdersateverylevelofthe

softwaresupplychainshouldconsidertheimplicationsofwidespreadAI-generated

code.AIresearchersanddeveloperscanevaluatemodeloutputswithsecurityinmind,programmersandsoftwarecompaniescanconsiderhowthesetoolsfitintoexisting

security-orientedprocesses,andpolicymakershavetheopportunitytoaddressbroadercybersecurityrisksassociatedwithAI-generatedcodebysettingappropriate

guidelines,providingincentives,andempoweringfurtherresearch.ThisreportprovidesanoverviewofthepotentialcybersecurityrisksassociatedwithAI-generatedcodeanddiscussesremainingresearchchallengesforthecommunityandimplicationsforpolicy.

CenterforSecurityandEmergingTechnology|4

Background

WhatAreCodeGenerationModels?

CodegenerationmodelsareAImodelscapableofgeneratingcomputercodein

responsetocodeornatural-languageprompts.Forexample,ausermightprompta

modelwith“WritemeafunctioninJavathatsortsalistofnumbers”andthemodelwilloutputsomecombinationofcodeandnaturallanguageinresponse.Thiscategoryof

modelsincludesbothlanguagemodelsthathavebeenspecializedforcodegenerationaswellasgeneral-purposelanguagemodels—alsoknownas“foundationmodels”—

thatarecapableofgeneratingothertypesofoutputsandarenotexplicitlydesignedto

outputcode.ExamplesofspecializedmodelsincludeAmazonCodeWhisperer,

DeepSeekCoder,WizardCoder,andCodeLlama,whilegeneral-purposemodelsincludeOpenAI’sGPTseries,Mistral,Gemini,andClaude.

Earlieriterationsofcodegenerationmodels—manyofwhichpredatedthecurrent

generationofLLMsandarestillinwidespreaduse—functionedsimilarlyto

“autocompleteforcode,”inwhichamodelsuggestsacodesnippettocompletealine

asausertypes.These“autocomplete”models,whichperformwhatisknownascode

infilling,aretrainedspecificallyforthistaskandhavebeenwidelyadoptedinsoftwaredevelopmentpipelines.Morerecentimprovementsinlanguagemodelcapabilitieshaveallowedformoreinteractivity,suchasnatural-languagepromptingorauserinputtingacodesnippetandaskingthemodeltocheckitforerrors.Likegeneral-purposelanguagemodels,userscommonlyinteractwithcodegenerationmodelsviaadedicatedinterfacesuchasachatwindoworaplugininanotherpieceofsoftware.Recently,specialized

scaffoldingsoftwarehasfurtherincreasedwhatAImodelsarecapableofincertaincontexts.Forinstance,somemodelsthatcanoutputcodemayalsobecapableof

executingthatcodeanddisplayingtheoutputstotheuser.3

Aslanguagemodelshavegottenlargerandmoreadvancedoverthepastfewyears,

theircodegenerationcapabilitieshaveimprovedinstepwiththeirnaturallanguage-

generationcapabilities.4Codinglanguagesare,afterall,intentionallydesignedto

encodeandconveyinformation,andhavetheirownrulesandsyntacticalexpectationsmuchlikehumanlanguages.Researchersinthefieldofnaturallanguageprocessing

(NLP)havebeeninterestedintranslatingbetweennaturallanguageandcomputercode

formanyyears,butthesimultaneousintroductionoftransformer-basedlanguage

modelarchitecturesandlargedatasetscontainingcodeledtoarapidimprovementincodegenerationcapabilitiesbeginningaround2018–2019.Asnewmodelswere

released,researchersalsobeganexploringwaystomakethemmoreaccessible.Inmid-2021,forexample,OpenAIreleasedthefirstversionofCodex,aspecializedlanguage

CenterforSecurityandEmergingTechnology|5

modelforcodegeneration,alongwiththeHumanEvalbenchmarkforassessingthe

correctnessofAIcodeoutputs.5Github,inpartnershipwithOpenAI,thenlauncheda

previewofaCodex-poweredAIpairprogrammingtoolcalledGithubCopilot.6Althoughitinitiallyfunctionedmoresimilarlyto“autocompleteforcode”thanacurrent-

generationLLMchatbot,GithubCopilot’srelativeaccessibilityandearlysuccesshelped

spurinterestincodegenerationtoolsamongprogrammers,manyofwhomwereinterestedinadoptingAItoolsforbothworkandpersonaluse.

Tobecomeproficientatcodegeneration,modelsneedtobetrainedondatasets

containinglargeamountsofhuman-writtencode.Modernmodelsareprimarilytrainedonpublicly-available,open-sourcecode.7Muchofthiscodewasscrapedfromopen-

sourcewebrepositoriessuchasGithub,whereindividualsandcompaniescanstore

andcollaborateoncodingprojects.Forexample,thefirstversionofthe6-terabyte

datasetknownasTheStackconsistsofsourcecodefilesin358differentprogramminglanguages,andhasbeenusedtopretrainseveralopencodegenerationmodels.8Otherlanguagemodeltrainingdatasetsareknowntocontaincodeinadditiontonatural-

languagetext.The825-gigabytedatasetcalledThePilecontains95gigabytesofGithubdataand32gigabytesscrapedfromStackExchange,afamilyofquestion-answeringforumsthatincludescodesnippetsandothercontentrelatedto

programming.9However,thereisoftenlimitedvisibilityintothedatasetsthat

developersusefortrainingmodels.Wecanspeculatethatthemajorityofcodebeing

usedtotraincodegenerationmodelshasbeenscrapedfromopen-sourcerepositories,butotherdatasetsusedfortrainingmaycontainproprietarycodeorsimplybeexcludedfrommodelcardsorotherformsofdocumentation.

Additionally,somespecializedmodelsarefine-tunedversionsofgeneral-purpose

models.Usually,theyarecreatedbytraininggeneral-purposemodelswithadditional

dataspecifictotheusecase.Thisisparticularlylikelyininstanceswherethemodel

needstotranslatenatural-languageinputsintocode,asgeneral-purposemodelstendtobebetteratfollowingandinterpretinguserinstructions.OpenAI’sCodexisonesuchexample,asitwascreatedbyfine-tuningaversionofthegeneral-purposeGPT-3

modelon159gigabytesofPythoncodescrapedfromGithub.10CodeLlamaandCodeLlamaPython—basedonMeta’sLlama2model—areotherexamplesofsuchmodels.

ResearchinterestinAIcodegenerationhasconsistentlyincreasedinthepastdecade,especiallyexperiencingasurgeinthepastyearfollowingthereleaseofhigh-

performingfoundationmodelssuchasGPT-4andopen-sourcemodelssuchasLlama2.Figure1illustratesthetrendbycountingthenumberofresearchpapersoncode

generationbyyearfrom2012–2023.Thenumberofresearchpapersoncode

CenterforSecurityandEmergingTechnology|6

generationmorethandoubledfrom2022to2023,demonstratingagrowingresearchinterestinitsusage,evaluation,andimplications.

Figure1:NumberofPapersonCodeGenerationbyYear*

Source:CSET’sMergedAcademicCorpus.

IncreasingIndustryAdoptionofAICodeGenerationTools

Codegenerationpresentsoneofthemostcompellingandwidelyadoptedusecasesforlargelanguagemodels.InadditiontoclaimsfromorganizationssuchasMicrosoftthattheirAIcodingtoolGitHubCopilothad1.8millionpaidsubscribersasofspring2024,

upfrommorethanamillioninmid-2023,11softwarecompaniesarealsoadopting

*ThisgraphcountsthenumberofpapersinCSET’sMergedAcademicCorpusthatcontainthe

keywords“codegeneration,”“AI-assistedprogramming,”“AIcodeassistant,”“codegenerating

LLM,”or“codeLLM”andarealsoclassifiedasAI-orcybersecurity-relatedusingCSET’sAIclassifierandcybersecurityclassifier.NotethatatthetimeofwritinginFebruary2024,CSET’sMerged

AcademicCorpusdidnotyetincludeallpapersfrom2023duetoupstreamcollectionlags,which

mayhaveresultedinanundercountingofpapersin2023.ThecorpuscurrentlyincludesdatafromClarivate’sWebofScience,TheLens,arXiv,PaperswithCode,SemanticScholar,andOpenAlex.

MoreinformationregardingourmethodologyforcompilingtheMergedAcademicCorpusaswellasbackgroundonourclassifiersandadetailedcitationofdatasourcesareavailablehere:

https://eto.tech/dataset-docs/mac/

;

/publication/identifying-ai-research/.

CenterforSecurityandEmergingTechnology|7

internalversionsofthesemodelsthathavebeentrainedonproprietarycodeand

customizedforemployeeuse.GoogleandMetahavecreatednon-public,customcodegenerationmodelsintendedtohelptheiremployeesdevelopnewproductsmore

efficiently.12

ProductivityisoftencitedasoneofthekeyreasonsindividualsandorganizationshaveadoptedAIcodegenerationtools.Metricsformeasuringhowmuchdeveloper

productivityimprovesbyleveragingAIcodegenerationtoolsvarybystudy.Asmall

GitHubstudyusedbothself-perceivedproductivityandtaskcompletiontimeas

productivitymetrics,buttheauthorsacknowledgedthatthereislittleconsensusaboutwhatmetricstouseorhowproductivityrelatestodeveloperwell-being.13AMcKinseystudyusingsimilarmetricsclaimedthatsoftwaredevelopersusinggenerativeAItoolscouldcompletecodingtasksuptotwiceasfastasthosewithoutthem,butthatthesebenefitsvarieddependingontaskcomplexityanddeveloperexperience.14Companieshavealsoruninternalproductivitystudieswiththeiremployees.AMetastudyontheirinternalcodegenerationmodelCodeComposeusedmetricssuchascodeacceptancerateandqualitativedeveloperfeedbacktomeasureproductivity,findingthat20%of

usersstatedthatCodeComposehelpedthemwritecodemorequickly,whileaGooglestudyfounda6%reductionincodingiterationtimewhenusinganinternalcode

completionmodelascomparedtoacontrolgroup.15Morerecently,aSeptember2024studyanalyzingdatafromrandomizedcontroltrialsacrossthreedifferentorganizationsfounda26%increaseinthenumberofcompletedtasksamongdevelopersusing

GitHubCopilotasopposedtodeveloperswhowerenotgivenaccesstothetool.16Moststudiesareinagreementthatcodegenerationtoolsimprovedeveloperproductivityin

general,regardlessoftheexactmetricsused.

AIcodegenerationtoolsareundoubtedlyhelpfultosomeprogrammers,especially

thosewhoseworkinvolvesfairlyroutinecodingtasks.(Generally,themorecommonacodingtaskorcodinglanguage,thebetteracodegenerationmodelcanbeexpectedtoperformbecauseitismorelikelytohavebeentrainedonsimilarexamples.)Automatingrotecodingtasksmayfreeupemployees’timeformorecreativeorcognitively

demandingwork.TheamountofsoftwarecodegeneratedbyAIsystemsisexpectedtoincreaseinthenear-tomedium-termfuture,especiallyasthecodingcapabilitiesof

today’smostaccessiblemodelscontinuetoimprove.

Broadlyspeaking,evidencesuggeststhatcodegenerationtoolshavebenefitsatboththeindividualandorganizationallevels,andthesebenefitsarelikelytoincreaseover

timeasmodelcapabilitiesimprove.Therearealsoplentyofincentives,suchaseaseof

accessandpurportedproductivitygains,fororganizationstoadopt—oratleastexperimentwith—AIcodegenerationforsoftwaredevelopment.

CenterforSecurityandEmergingTechnology|8

RisksAssociatedwithAICodeGeneration

Thistechnologicalbreakthrough,however,mustalsobemetwithcaution.Increasing

usageofcodegenerationmodelsinroutinesoftwaredevelopmentprocessesmeans

thatthesemodelswillsoonbeanimportantpartofthesoftwaresupplychain.Ensuringthattheiroutputsaresecure—orthatanyinsecureoutputstheyproduceareidentifiedandcorrectedbeforecodeentersproduction—willalsobeincreasinglyimportantfor

cybersecurity.However,codegenerationmodelsareseldomtrainedwithsecurityasabenchmarkandareinsteadoftentrainedtomeetvariousfunctionalitybenchmarkssuchasHumanEval,asetof164human-writtenprogrammingproblemsintendedto

evaluatemodels’code-writingcapabilityinthePythonprogramminglanguage.17Asthe

functionalityofthesecodegenerationmodelsincreasesandmodelsareadoptedintothestandardroutineoforganizationsanddevelopers,overlookingthepotential

vulnerabilitiesofsuchcodemayposesystemiccybersecurityrisks.

Theremainderofthissectionwillexaminethreepotentialsourcesofriskingreater

detail:1)codegenerationmodels’likelihoodofproducinginsecurecode,2)themodels’vulnerabilitytoattacks,and3)potentialdownstreamcybersecurityimplicationsrelatedtothewidespreaduseofcodegenerationmodels.

CodeGenerationModelsProduceInsecureCode

Anemergingbodyofresearchonthesecurityofcodegenerationmodelsfocusesonhowtheymightproduceinsecurecode.Thesevulnerabilitiesmaybecontainedwithinthecodeitselforinvolvecodethatcallsapotentiallyvulnerableexternalresource.

Human-computerinteractionfurthercomplicatesthisproblem,as1)usersmay

perceiveAI-generatedcodeasmoresecureormoretrustworthythanhuman-

generatedcode,and2)researchersmaybeunabletopinpointexactlyhowtostopmodelsfromgeneratinginsecurecode.Thissectionexploresthesevarioustopicsinmoredetail.

Firstly,variouscodegenerationmodelsoftensuggestinsecurecodeasoutputs.Pearceetal.(2021)showthatapproximately40%ofthe1,689programsgeneratedbyGithubCopilot18werevulnerabletoMITRE’s“2021CommonWeaknessEnumerations(CWE)Top25MostDangerousSoftwareWeaknesses”list.19SiddiqandSantos(2022)foundthatoutof130codesamplesgeneratedusingInCoderandGithubCopilot,68%and

73%ofthecodesamplesrespectivelycontainedvulnerabilitieswhenchecked

manually.20Khouryetal.(2023)usedChatGPTtogenerate21programsinfive

differentprogramminglanguagesandtestedforCWEs,showingthatonlyfiveoutof21wereinitiallysecure.Onlyafterspecificpromptingtocorrectthecodedidan

CenterforSecurityandEmergingTechnology|9

additionalsevencasesgeneratesecurecode.21Fuetal.(2024)showthatoutof452real-worldcasesofcodesnippetsgeneratedbyGithubCopilotfrompubliclyavailableprojects,32.8%ofPythonand24.5%ofJavaScriptsnippetscontained38different

CWEs,eightofwhichbelongtothe2023CWETop25list.22

Incertaincodinglanguages,codegenerationmodelsarealsolikelytoproducecodethatcallsexternallibrariesandpackages.Theseexternalcodesourcescanpresenta

hostofproblems,somesecurity-relevant:Theymaybenonexistentandmerely

hallucinatedbythemodel,outdatedandunpatchedforvulnerabilities,ormaliciousin

nature(suchaswhenattackersattempttotakeadvantageofcommonmisspellingsinURLsorpackagenames).23Forexample,VulcanCybershowedthatChatGPTroutinelyrecommendednonexistentpackageswhenansweringcommoncodingquestions

sourcedfromStackOverflow—over40outof201questionsinNode.jsandover80outof227questionsinPythoncontainedatleastonenonexistentpackageintheanswer.24Furthermore,someofthesehallucinatedlibraryandpackagenamesarepersistent

acrossbothusecasesanddifferentmodels;asafollow-upstudydemonstrated,a

potentialattackercouldeasilycreateapackagewiththesamenameandgetuserstounknowinglydownloadmaliciouscode.25

Despitetheseempiricalresults,thereareearlyindicationsthatusersperceiveAI-

generatedcodetobemoresecurethanhuman-writtencode.This“automationbias”

towardsAI-generatedcodemeansthatusersmayoverlookcarefulcodereviewand

acceptinsecurecodeasitis.Forinstance,ina2023industrysurveyof537technologyandITworkersandmanagers,76%respondedthatAIcodeismoresecurethanhumancode.26Perryetal.(2023)furthershowedinauserstudythatstudentparticipantswithaccesstoanAIassistantwrotesignificantlylesssecurecodethanthosewithout

access,andweremorelikelytobelievethattheywrotesecurecode.27However,thereissomedisagreementonwhetherornotusersofAIcodegenerationtoolsaremorelikelytowriteinsecurecode;otherstudiessuggestthatuserswithaccesstoAIcode

assistantsmaynotbesignificantlymorelikelytoproduceinsecurecodethanusers

withoutAItools.28Thesecontradictoryfindingsraiseaseriesofrelatedquestions,suchas:Howdoesauser’sproficiencywithcodingaffecttheiruseofcodegeneration

models,andtheirlikelihoodofacceptingAI-generatedcodeassecure?Could

automationbiasleadhumanprogrammerstoaccept(potentiallyinsecure)AI-generatedcodeassecuremoreoftenthanhuman-authoredcode?Regardless,thefactthatAI

codingtoolsmayprovideinexperienceduserswithafalsesenseofsecurityhas

cybersecurityimplicationsifAI-generatedcodeismoretrustedandlessscrutinizedforsecurityflaws.

CenterforSecurityandEmergingTechnology|10

Furthermore,thereremainsuncertaintyaroundwhycodegenerationmodelsproduceinsecurecodeinthefirstplace,andwhatcausesvariationinthesecurityofcode

outputsacrossandwithinmodels.Partoftheanswerliesinthatmanyofthesemodelsaretrainedoncodefromopen-sourcerepositoriessuchasGithub.Theserepositories

containhuman-authoredcodewithknownvulnerabilities,largelydonotenforcesecure

codingpractices,andlackdatasanitizationprocessesforremovingcodewitha

significantnumberofknownvulnerabilities.Recentworkhasshownthatsecurity

vulnerabilitiesinthetrainingdatacanleakintooutputsoftransformer-basedmodels,

whichdemonstratesthatvulnerabilitiesintheunderlyingtrainingdatacontributetotheproblemofinsecurecodegeneration.29Addingtothechallenge,thereisoftenlittleto

notransparencyinexactlywhatcodewasincludedintrainingdatasetsandwhetherornotanyattemptsweremadetoimproveitssecurity.

Manyotheraspectsofthequestionofhow—andwhy—codegenerationmodelsproduceinsecurecodearestillunanswered.Forexample,a2023Metastudythat

comparedseveralversionsofLlama2,CodeLlama,andGPT-3.5and4foundthat

modelswithmoreadvancedcodingcapabilitiesweremorelikelytooutputinsecure

code.30Thissuggestsapossibleinverserelationshipbetweenfunctionalityandsecurityincodegenerationmodelsandshouldbeinvestigatedfurther.Inanotherexample,

researchersconductedacomparativestudyoffourmodels–GPT-3.5,GPT-4,Bard,

andGemini–andfoundthatpromptingmodelstoadopta“securitypersona”eliciteddivergentresults.31WhileGPT-3.5,GPT-4,andBardsawareductioninthenumberofvulnerabilitiesfromthenormalpersona,Gemini’scodeoutputcontainedmore

vulnerabilities.32Theseearlystudieshighlightsomeoftheknowledgegapsconcerning

howinsecurecodeoutputsaregeneratedandhowtheychangeinresponsetovariablessuchasmodelsizeandpromptengineering.

Models’VulnerabilitytoAttack

Inadditiontothecodethattheyoutput,codegenerationmodelsaresoftwaretoolsthatneedtobeproperlysecured.AImodelsarevulnerabletohacking,tampering,or

manipulationinwaysthathumansarenot.33Figure2illustratesthecodegenerationmodeldevelopmentworkflow,wheretheportionsinredindicatevariouswaysa

maliciouscyberactormayattackamodel.

CenterforSecurityandEmergingTechnology|11

Figure2:CodeGenerationModelDevelopmentWorkflowandItsCybersecurityImplications

Source:CSET.

GenerativeAIsystemshaveknownvulnerabilitiestoseveraltypesofadversarial

attacks.Theseincludedatapoisoningattacks,inwhichanattackercontaminatesamodel’strainingdatatoelicitadesiredbehavior,andbackdoorattacks,inwhichan

attackerattemptstoproduceaspecificoutputbypromptingthemodelwitha

predeterminedtriggerphrase.Inthecodegenerationcontext,adatapoisoningattack

maylooklikeanattackermanipulatingamodel’strainingdatatoincreaseitslikelihoodofproducingcodethatimportsamaliciouspackageorlibrary.Abackdoorattackonthemodelitself,meanwhile,coulddramaticallychangeamodel’sbehaviorwithasingle

triggerthatmaypersistevenifdeveloperstrytoremoveit.34Thischangedbehaviorcanresultinanoutputthatviolatesrestrictionsplacedonthemodelbyitsdevelopers(suchas“don’tsuggestcodepatternsassociatedwithmalware”)orthatmayreveal

unwantedorsensitiveinformation.Researchershavepointedoutthatbecausecodegenerationmodelsaretrainedonlargeamountsofdatafromafinitenumberof

unsanitizedcoderepositories,attackerscouldeasilyseedthese

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论