中国科学院大学《机器学习基础理论》2021-2022学年第一学期期末试卷_第1页
中国科学院大学《机器学习基础理论》2021-2022学年第一学期期末试卷_第2页
中国科学院大学《机器学习基础理论》2021-2022学年第一学期期末试卷_第3页
中国科学院大学《机器学习基础理论》2021-2022学年第一学期期末试卷_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

站名:站名:年级专业:姓名:学号:凡年级专业、姓名、学号错写、漏写或字迹不清者,成绩按零分记。…………密………………封………………线…………第1页,共1页中国科学院大学《机器学习基础理论》

2021-2022学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共20个小题,每小题1分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、假设正在构建一个语音识别系统,需要对输入的语音信号进行预处理和特征提取。语音信号具有时变、非平稳等特点,在预处理阶段,以下哪种操作通常不是必需的?()A.去除背景噪声B.对语音信号进行分帧和加窗C.将语音信号转换为频域表示D.对语音信号进行压缩编码,减少数据量2、假设正在开发一个用于推荐系统的深度学习模型,需要考虑用户的短期兴趣和长期兴趣。以下哪种模型结构可以同时捕捉这两种兴趣?()A.注意力机制与循环神经网络的结合B.多层感知机与卷积神经网络的组合C.生成对抗网络与自编码器的融合D.以上模型都有可能3、在进行强化学习中的策略优化时,以下关于策略优化方法的描述,哪一项是不正确的?()A.策略梯度方法通过直接计算策略的梯度来更新策略参数B.信赖域策略优化(TrustRegionPolicyOptimization,TRPO)通过限制策略更新的幅度来保证策略的改进C.近端策略优化(ProximalPolicyOptimization,PPO)是一种基于策略梯度的改进算法,具有更好的稳定性和收敛性D.所有的策略优化方法在任何强化学习任务中都能取得相同的效果,不需要根据任务特点进行选择4、在一个强化学习场景中,智能体在探索新的策略和利用已有的经验之间需要进行平衡。如果智能体过于倾向于探索,可能会导致效率低下;如果过于倾向于利用已有经验,可能会错过更好的策略。以下哪种方法可以有效地控制这种平衡?()A.调整学习率B.调整折扣因子C.使用ε-贪婪策略,控制探索的概率D.增加训练的轮数5、假设正在进行一个情感分析任务,使用深度学习模型。以下哪种神经网络架构常用于情感分析?()A.卷积神经网络(CNN)B.循环神经网络(RNN)C.长短时记忆网络(LSTM)D.以上都可以6、想象一个文本分类的任务,需要对大量的新闻文章进行分类,如政治、经济、体育等。考虑到词汇的多样性和语义的复杂性。以下哪种词向量表示方法可能是最适合的?()A.One-Hot编码,简单直观,但向量维度高且稀疏B.词袋模型(BagofWords),忽略词序但计算简单C.分布式词向量,如Word2Vec或GloVe,能够捕捉词与词之间的语义关系,但对多义词处理有限D.基于Transformer的预训练语言模型生成的词向量,具有强大的语言理解能力,但计算成本高7、在构建一个用于图像识别的卷积神经网络(CNN)时,需要考虑许多因素。假设我们正在设计一个用于识别手写数字的CNN模型。以下关于CNN设计的描述,哪一项是不正确的?()A.增加卷积层的数量可以提取更复杂的图像特征,提高识别准确率B.较大的卷积核尺寸能够捕捉更广泛的图像信息,有助于模型性能提升C.在卷积层后添加池化层可以减少特征数量,降低计算复杂度,同时保持主要特征D.使用合适的激活函数如ReLU可以引入非线性,增强模型的表达能力8、强化学习中的智能体通过与环境的交互来学习最优策略。以下关于强化学习的说法中,错误的是:强化学习的目标是最大化累计奖励。智能体根据当前状态选择动作,环境根据动作反馈新的状态和奖励。那么,下列关于强化学习的说法错误的是()A.Q学习是一种基于值函数的强化学习算法B.策略梯度算法是一种基于策略的强化学习算法C.强化学习算法只适用于离散动作空间,对于连续动作空间不适用D.强化学习可以应用于机器人控制、游戏等领域9、考虑一个图像分类任务,使用深度学习模型进行训练。在训练过程中,如果发现模型在训练集上的准确率很高,但在验证集上的准确率较低,可能存在以下哪种问题?()A.模型欠拟合,需要增加模型的复杂度B.数据预处理不当,需要重新处理数据C.模型过拟合,需要采取正则化措施D.训练数据量不足,需要增加更多的数据10、考虑在一个图像识别任务中,需要对不同的物体进行分类,例如猫、狗、汽车等。为了提高模型的准确性和泛化能力,以下哪种数据增强技术可能是有效的()A.随机旋转图像B.增加图像的亮度C.对图像进行模糊处理D.减小图像的分辨率11、某研究需要对生物信息数据进行分析,例如基因序列数据。以下哪种机器学习方法在处理生物信息学问题中经常被应用?()A.隐马尔可夫模型B.条件随机场C.深度学习模型D.以上方法都常用12、在自然语言处理中,词嵌入(WordEmbedding)的作用是()A.将单词转换为向量B.进行词性标注C.提取文本特征D.以上都是13、在一个分类问题中,如果数据分布不均衡,以下哪种方法可以用于处理这种情况?()A.过采样B.欠采样C.生成对抗网络(GAN)生成新样本D.以上方法都可以14、某机器学习项目需要对大量的图像进行分类,但是计算资源有限。以下哪种技术可以在不显著降低性能的前提下减少计算量?()A.模型压缩B.数据量化C.迁移学习D.以上技术都可以考虑15、在一个情感分析任务中,需要同时考虑文本的语义和语法信息。以下哪种模型结构可能是最有帮助的?()A.卷积神经网络(CNN),能够提取局部特征,但对序列信息处理较弱B.循环神经网络(RNN),擅长处理序列数据,但长期依赖问题较严重C.长短时记忆网络(LSTM),改进了RNN的长期记忆能力,但计算复杂度较高D.结合CNN和LSTM的混合模型,充分利用两者的优势16、在进行迁移学习时,以下关于迁移学习的应用场景和优势,哪一项是不准确的?()A.当目标任务的数据量较少时,可以利用在大规模数据集上预训练的模型进行迁移学习B.可以将在一个领域学习到的模型参数直接应用到另一个不同但相关的领域中C.迁移学习能够加快模型的训练速度,提高模型在新任务上的性能D.迁移学习只适用于深度学习模型,对于传统机器学习模型不适用17、在进行图像识别任务时,需要对大量的图像数据进行特征提取。假设我们有一组包含各种动物的图像,要区分猫和狗。如果采用传统的手工设计特征方法,可能会面临诸多挑战,例如特征的选择和设计需要丰富的专业知识和经验。而使用深度学习中的卷积神经网络(CNN),能够自动从数据中学习特征。那么,以下关于CNN在图像特征提取方面的描述,哪一项是正确的?()A.CNN只能提取图像的低级特征,如边缘和颜色B.CNN能够同时提取图像的低级和高级语义特征,具有强大的表达能力C.CNN提取的特征与图像的内容无关,主要取决于网络结构D.CNN提取的特征是固定的,无法根据不同的图像数据集进行调整18、在进行模型压缩时,以下关于模型压缩方法的描述,哪一项是不准确的?()A.剪枝是指删除模型中不重要的权重或神经元,减少模型的参数量B.量化是将模型的权重进行低精度表示,如从32位浮点数转换为8位整数C.知识蒸馏是将复杂模型的知识转移到一个较小的模型中,实现模型压缩D.模型压缩会导致模型性能严重下降,因此在实际应用中应尽量避免使用19、假设正在进行一个异常检测任务,例如检测网络中的异常流量。如果正常数据的模式较为复杂,以下哪种方法可能更适合用于发现异常?()A.基于统计的方法B.基于距离的方法C.基于密度的方法D.基于分类的方法20、考虑一个回归问题,我们使用均方误差(MSE)作为损失函数。如果模型的预测值与真实值之间的MSE较大,这意味着什么()A.模型的预测非常准确B.模型存在过拟合C.模型存在欠拟合D.无法确定模型的性能二、简答题(本大题共5个小题,共25分)1、(本题5分)简述在金融领域,风险评估中机器学习的应用。2、(本题5分)简述机器学习中的聚类算法及其分类。3、(本题5分)简述在机器学习中,如何处理类别不平衡的数据集。4、(本题5分)解释机器学习在物流配送中的优化方案。5、(本题5分)简述在智能安防中,机器学习的应用。三、应用题(本大题共5个小题,共25分)1、(本题5分)设计一个生成对抗网络(GAN)生成手写数字图像。2、(本题5分)根据交通流量数据预测道路拥堵情况,优化交通管理。3、(本题5分)使用市场营销数据进行客户细分,制定精准营销策略。4、(本题5分)利用宗教研究数据了解宗教信仰和文化传播。5、(本题5分)利用GAN生成新的建筑设计图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论