版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页烟台理工学院
《手机移动开发技术》2023-2024学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共20个小题,每小题2分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、假设正在进行一个情感分析任务,使用深度学习模型。以下哪种神经网络架构常用于情感分析?()A.卷积神经网络(CNN)B.循环神经网络(RNN)C.长短时记忆网络(LSTM)D.以上都可以2、在进行特征工程时,需要对连续型特征进行离散化处理。以下哪种离散化方法在某些情况下可以保留更多的信息,同时减少数据的复杂性?()A.等宽离散化B.等频离散化C.基于聚类的离散化D.基于决策树的离散化3、在进行模型融合时,以下关于模型融合的方法和作用,哪一项是不准确的?()A.可以通过平均多个模型的预测结果来进行融合,降低模型的方差B.堆叠(Stacking)是一种将多个模型的预测结果作为输入,训练一个新的模型进行融合的方法C.模型融合可以结合不同模型的优点,提高整体的预测性能D.模型融合总是能显著提高模型的性能,无论各个模型的性能如何4、在深度学习中,批量归一化(BatchNormalization)的主要作用是()A.加速训练B.防止过拟合C.提高模型泛化能力D.以上都是5、考虑一个图像分割任务,即将图像分割成不同的区域或对象。以下哪种方法常用于图像分割?()A.阈值分割B.区域生长C.边缘检测D.以上都是6、在一个强化学习问题中,如果智能体需要与多个对手进行交互和竞争,以下哪种算法可以考虑对手的策略?()A.双人零和博弈算法B.多智能体强化学习算法C.策略梯度算法D.以上算法都可以7、假设要开发一个自然语言处理的系统,用于文本情感分析,判断一段文字是积极、消极还是中性。考虑到文本的多样性和语义的复杂性。以下哪种技术和方法可能是最有效的?()A.基于词袋模型的朴素贝叶斯分类器,计算简单,但忽略了词序和上下文信息B.循环神经网络(RNN),能够处理序列数据,但可能存在梯度消失或爆炸问题C.长短时记忆网络(LSTM),改进了RNN的长期依赖问题,对长文本处理能力较强,但模型较复杂D.基于Transformer架构的预训练语言模型,如BERT或GPT,具有强大的语言理解能力,但需要大量的计算资源和数据进行微调8、集成学习是一种提高机器学习性能的方法。以下关于集成学习的说法中,错误的是:集成学习通过组合多个弱学习器来构建一个强学习器。常见的集成学习方法有bagging、boosting和stacking等。那么,下列关于集成学习的说法错误的是()A.bagging方法通过随机采样训练数据来构建多个不同的学习器B.boosting方法通过逐步调整样本权重来构建多个不同的学习器C.stacking方法将多个学习器的预测结果作为新的特征输入到一个元学习器中D.集成学习方法一定比单个学习器的性能更好9、在机器学习中,模型的可解释性是一个重要的方面。以下哪种模型通常具有较好的可解释性?()A.决策树B.神经网络C.随机森林D.支持向量机10、在一个强化学习问题中,如果环境的状态空间非常大,以下哪种技术可以用于有效地表示和处理状态?()A.函数逼近B.状态聚类C.状态抽象D.以上技术都可以11、在进行特征选择时,有多种方法可以评估特征的重要性。假设我们有一个包含多个特征的数据集。以下关于特征重要性评估方法的描述,哪一项是不准确的?()A.信息增益通过计算特征引入前后信息熵的变化来衡量特征的重要性B.卡方检验可以检验特征与目标变量之间的独立性,从而评估特征的重要性C.随机森林中的特征重要性评估是基于特征对模型性能的贡献程度D.所有的特征重要性评估方法得到的结果都是完全准确和可靠的,不需要进一步验证12、考虑一个推荐系统,需要根据用户的历史行为和兴趣为其推荐相关的商品或内容。在构建推荐模型时,可以使用基于内容的推荐、协同过滤推荐或混合推荐等方法。如果用户的历史行为数据较为稀疏,以下哪种推荐方法可能更合适?()A.基于内容的推荐,利用商品的属性和用户的偏好进行推荐B.协同过滤推荐,基于用户之间的相似性进行推荐C.混合推荐,结合多种推荐方法的优点D.以上方法都不合适,无法进行有效推荐13、在机器学习中,特征工程是非常重要的一步。假设我们要预测一个城市的空气质量,有许多相关的原始数据,如气象数据、交通流量、工厂排放等。以下关于特征工程的描述,哪一项是不准确的?()A.对原始数据进行标准化或归一化处理,可以使不同特征在数值上具有可比性B.从原始数据中提取新的特征,例如计算交通流量的日变化率,有助于提高模型的性能C.特征选择是选择对目标变量有显著影响的特征,去除冗余或无关的特征D.特征工程只需要在模型训练之前进行一次,后续不需要再进行调整和优化14、在机器学习中,监督学习是一种常见的学习方式。假设我们有一个数据集,包含了房屋的面积、房间数量、地理位置等特征,以及对应的房价。如果我们想要使用监督学习算法来预测新房屋的价格,以下哪种算法可能是最合适的()A.K-Means聚类算法B.决策树算法C.主成分分析(PCA)D.独立成分分析(ICA)15、机器学习是一门涉及统计学、计算机科学和人工智能的交叉学科。它的目标是让计算机从数据中自动学习规律和模式,从而能够进行预测、分类、聚类等任务。以下关于机器学习的说法中,错误的是:机器学习算法可以分为监督学习、无监督学习和强化学习三大类。监督学习需要有标注的训练数据,无监督学习则不需要标注数据。那么,下列关于机器学习的说法错误的是()A.决策树是一种监督学习算法,可以用于分类和回归任务B.K均值聚类是一种无监督学习算法,用于将数据分成K个聚类C.强化学习通过与环境的交互来学习最优策略,适用于机器人控制等领域D.机器学习算法的性能只取决于算法本身,与数据的质量和数量无关16、在构建机器学习模型时,选择合适的正则化方法可以防止过拟合。假设我们正在训练一个逻辑回归模型。以下关于正则化的描述,哪一项是错误的?()A.L1正则化会使部分模型参数变为0,从而实现特征选择B.L2正则化通过对模型参数的平方和进行惩罚,使参数值变小C.正则化参数越大,对模型的约束越强,可能导致模型欠拟合D.同时使用L1和L2正则化(ElasticNet)总是比单独使用L1或L2正则化效果好17、当使用支持向量机(SVM)进行分类任务时,如果数据不是线性可分的,通常会采用以下哪种方法()A.增加样本数量B.降低维度C.使用核函数将数据映射到高维空间D.更换分类算法18、考虑一个时间序列预测问题,数据具有明显的季节性特征。以下哪种方法可以处理这种季节性?()A.在模型中添加季节性项B.使用季节性差分C.采用季节性自回归移动平均(SARIMA)模型D.以上都可以19、在机器学习中,对于一个分类问题,我们需要选择合适的算法来提高预测准确性。假设数据集具有高维度、大量特征且存在非线性关系,同时样本数量相对较少。在这种情况下,以下哪种算法可能是一个较好的选择?()A.逻辑回归B.决策树C.支持向量机D.朴素贝叶斯20、想象一个图像分类的竞赛,要求在有限的计算资源和时间内达到最高的准确率。以下哪种优化策略可能是最关键的?()A.数据增强,通过对原始数据进行随机变换增加数据量,但可能引入噪声B.超参数调优,找到模型的最优参数组合,但搜索空间大且耗时C.模型压缩,减少模型参数和计算量,如剪枝和量化,但可能损失一定精度D.集成学习,组合多个模型的预测结果,提高稳定性和准确率,但训练成本高二、简答题(本大题共3个小题,共15分)1、(本题5分)说明机器学习在摄影艺术中的图像优化。2、(本题5分)简述机器学习在电商中的客户行为分析。3、(本题5分)简述在智能客服中,机器学习的作用。三、应用题(本大题共5个小题,共25分)1、(本题5分)利用鸟类学数据保护鸟类和研究鸟类生态。2、(本题5分)运用梯度提升树预测电力市场的价格。3、(本题5分)运用回归模型预测物流运输的时间。4、(本题5分)使用决策树算法对用户
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 开题报告:新高考制度下高中英语学科核心素养评价体系构建研究
- 2024年度企业人事保密协议版B版
- 《财产税收》课件
- 企业人力资源课件-企业战略管理
- 2024年五大行业流行趋势报告
- 2024年度版权交易合同:数字音乐版权交易3篇
- 新学期学生会编辑部工作计划
- 2024美容院店长工作计划
- 春季2024幼儿班务工作计划范文
- 《短距离无线通信及组网技术》课件第1章
- 不锈钢蚀刻加工工艺
- 新版人教版八年级上册英语单词表-听写用-
- 粉煤灰库房租赁合同
- 医院学科建设总结汇报
- 长租公寓课件
- 健康体检科质量控制标准课件
- 北京市建设工程施工现场安全生产标准化管理图集(2019版)
- 巨量广告投放培训课件
- 矿井主要灾害事故防治应急避灾知识
- 隶书详解教学课件
- 更年期门诊管理制度
评论
0/150
提交评论