版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章统计第八课时1.6用样本的数字特征估计总体的数字特征(二)一、三维目标1、知识与技能(1)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.(2)会用样本的基本数字特征估计总体的基本数字特征.(3)形成对数据处理过程进行初步评价的意识.2、过程与方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.3、情感态度与价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辨证地理解数学知识与现实世界的联系.二、教学重点:用样本平均数和标准差估计总体的平均数与标准差.三、教学难点:能应用相关知识解决简单的实际问题.新课导入设计导入一在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了.于是,需要通过随机抽样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征.导入二用随机抽样的方法获得样本,我们就会得到一组数据,统计思想的本质就是用样本估计总体.用样本估计总体,一般有两种方法:一是用样本的频率分布估计总体分布;二是用样本的数字特征估计总体的数字特征.第一种方法我们已经学习了啦,本节我们继续学习第二种方法.教学流程:通过具体实例理解众数,中位数,平均数↓从频率分布直方图估计众数↓从频率分布直方图估计中位数↓从频率分布直方图估计平均数↓问题探究↓小结、作业教学情境设计:1.创设情景,揭示课题上一节我们学习了用图、表组织样本数据,并且学习了如何通过图、表提供的信息,用样本的频率分布估计总体的分布.在日常生活中,我们往往并不需要了解总体的分布形态,而是关心总体的某一数字特征,例如:居民月均用水量问题,我们关心的是数字,而不是总体的分布形态.因此我们要通过样本的数据对总体的数字特征进行研究.——用样本的数字特征估计总体的数字特征(板出课题).2.探究:(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?我们初中时学习众数、中位数、平均数等数字特征.我们共同回忆一下?什么是众数、中位数、平均数?众数—一一组数中出现次数最多的数.中位数——将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.平均数——将所有数相加再除以这组数的个数,所得到得数.热身训练:求下列各组数据的众数、中位数、平均数(1)1,2,3,3,3,4,6,7,7,8,8,8(2)1,2,3,3,3,4,6,7,8,9,9答案:(1)众数是:3和8中位数是:5平均数是:5(2)众数是:3中位数是:4平均数是:5例如,在上一节抽样调查的100位居民的月均用水量的数据中,我们如何得知这一组样本数据的众数、中位数和平均数?众数=2.3(t)、中位数=2.0(t)、平均数=1.973(t)那么从频率分布直方图你能得到这些数据的众数,中位数,平均数吗?3.如何在频率直方图中估计众数、中位数、平均数呢?如何从频率分布直方图中估计众数?4.54.50.52.521.5143.5300.10.20.30.40.6月均用水量/t0.5学生交流讨论,回答从频率分布直方图可以看出:月均用水量的众数是2.25t(最高的矩形的中点),它告诉我们,该市的月均用水量为2.25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.思考1:请大家看看原来抽样的数据,有没有2.25
这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?表2-1100表2-1100为居民的月均用水量(单位:t)2.20.61.81.21.01.52.02.22.52.82.40.81.71.01.01.62.12.32.62.52.40.51.51.21.41.72.12.42.72.62.30.91.61.31.31.82.32.32.82.52.00.71.81.41.31.92.42.42.93.04.30.81.93.51.41.82.32.42.93.24.10.61.73.61.31.72.22.32.83.33.80.51.53.71.21.62.12.32.73.20.40.30.40.21.21.52.22.22.63.41.61.91.81.61.01.52.02.02.53.1请学生思考交流,回答这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.显然通过频率分布直方图的估计精度较低,其估计结果与数据分组有关,在不能得到样本数据,只能得到频率分布直方图的情况下,也可以估计总体的特征.归纳总结:因为在频率分布直方图中,各小长方形的面积表示相应各组的频率,也显示出样本数据落在各小组的比例的大小,所以从图中可以看到,在区间[2,2.5)的小长方形的面积最大,即这组的频率是最大的,也就是说月均用水量在区间[2,2.5)内的居民最多,即众数就是在区间[2,2.5)内.众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标.如何从频率分布直方图估计中位数?月均用水量/t月均用水量/t观察频率分布直方图估计中位数4.50.521.5143.53频率组距00.10.20.30.40.50.60.080.150.220.250.140.060.040.020.042.5学生交流讨论,回答分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等.由此可以估计中位数的值.设中位数为,则求出在上图中,红色虚线代表居民月平均用水量的中位数的估计值.其左边的直方图的面积是50个单位.右边的直方图的面积也是50个单位.由此可以估计出中位数的值为2.02.思考2:2.02这个中位数的估计值,与样本的中位数值2.0不一样,你能解释其中的原因吗?(样本数据的频率分布直方图把原始的一些数据给遗失了)3)如何从频率分布直方图中估计平均数?学生交流讨论,回答平均数等于是频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.以上图为例来讲解求解过程;平均数为2.02由此居民的月用水量的平均数是2.02t.大部分居民的月均用水量在中部(2.02t左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的.思考3:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?让学生讨论,并举例优点:对极端数据不敏感的方法能够有效地预防错误数据的影响.对极端值不敏感有利的例子:如当样本数据质量比较差,即存在一些错误数据(如数据录入错误、测量错误等)时,如:考察表中2-1中的数据如果把最后一个数据错写成22,并不会对样本中位数产生影响.也就是说对极端数据不敏感的方法能过有效地预防错误数据的影响.用抗极端数据强的中位数表示数据的中心值更准确.缺点:(1)出现错误的数据也不知道;(2)对极端值不敏感有弊的例子:某人具有初级计算机专业技术水平,想找一份收入好的工作.这时如果采用各个公司计算机专业技术人员收入的中位数作为选择工作的参考指标就会冒这样的风险:很可能所选择公司的初级计算机专业技术水平人员的收入很低,其原因是中位数对极小的数据不敏感.这里更好的方法是同时用平均工资和中位数作为参考指标,选择平均工资较高且中位数较大的公司就业.4)对众数,中位数,平均数估计总体数字特征的认识(1)样本众数通常用来表示分类变量的中心值,比较容易计算,但是它只能表示样本数据中的很少一部分信息.(2)中位数不受少数几个极端值的影响,容易计算,它仅利用了数据排在中间的数据的信息.(3)样本平均数与每个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变.这是中位数,众数都不具有的性质,也正因为这个原因,与众数,中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.探究:“用数据说话”这是我们经常可以听到的一句话.但是数据有时也会被利用,从而产生误导.例如一个企业中,绝大多数是一线工人,他们的年收入可能是一万元左右,另有一些经理层次的人,年收入可以达到几十万元.这时,年收入的平均数会比中位数大得多,尽管这时中位数比平均数更合理些,但是这个企业的老板到人力市场去招聘工人时,也许更可能用平均数回答有关工资待遇方面的提问.你认为“我们单位的收入水平比别的单位高”这句话应当怎么解释?以员工平均工资收入水平去描述他们单位的收入情况.这是不合理的,因为这些员工当中,少数经理层次的收入与大多数一般员工收入的差别比较大,平均数受数据中的极端值的影响大,所以平均数不能反映该单位员工的收入水平.这个老板的话有误导与蒙骗行例题例1为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差.天数151~180181~210211~240241~270271~300301~330331~360361~390灯泡数1111820251672解:各组中值分别为165,195,225,285,315,345,375,由此算得平均数约为165×1%+195×11%+225×18%+255×20%+285×25%+315×16%+345×7%+375×2%=267.9≈268(天).这些组中值的方差为1/100×[1×(165-268)2+11×(195-268)2+18×(225-268)2+20×(255-268)2+25×(285-268)2+16×(315-268)2+7×(345-268)2+2×(375-268)2]=2128.60(天2).故所求的标准差约(天)所以,估计这种日光灯的平均使用寿命约为268天,标准差约为46天.例2甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据这组数据估计哪一种水稻品种的产量比较稳定.品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8解:甲品种的样本平均数为10,样本方差为乙品种的样本平均数也为10,样本方差为因为0.24>0.02,所以由这组数据可以认为甲种水稻的产量比较稳定.例3某公司的33名职工的月工资(单位:元)如下表:职务董事长副董事长董事总经理经理管理员职员人数11215320工资5500500035003000250020001500求该公司职工月工资的平均数、中位数、众数.若董事长、副董事长的工资分别从5500元、5000元提升到30000元、20000元,那么公司职工新的平均数、中位数和众数又是什么?你认为哪个统计量更能反映这个公司员工的工资水平?解析:(1)公司职工月工资的平均数为:(元)若把所有数据从大到小排序,则得到:中位数是1500元,众数是1500元.(2)若董事长、副董事长的工资提升后,职工月工资的平均数为:(元)中位数是1500元,众位是1500元.(3)在这个问题中,中位数和众数都能反映出这个公司员工的工资水平,因为公司少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.巩固练习1.下面是某校日睡眠时间的抽样频率分布表(单位:小时)试估计该校学生的日睡眠平均时间.解1:可先要计算总睡眠时间,然后除以总人数,得样本的平均数.因为该校这100名学生的总睡眠时间约为(小时)所以样本的平均日睡眠时间约为(小时)答:估计该校学生的日睡眠平均时间为小时.解2:求组中值与对应频率之积的和.答:估计该校学生的日睡眠平均时间为小时.2.为了解中学生的身体发育情况,对某一中学同年龄的50名男生的身高进行了测量结果如下(单位:cm):(1)列出样本的频率分布表,画出频率分布直方图;(2)估计该中学身高大于172cm的概率及同年龄的高度;(3)估计该中学这个年龄的平均身高和稳定程度.解:(1)样本频率分布表为:频率分布直方图如图1—6—25所示:图1—6—25(2)因为数据大于172cm的频率为所以可以估计数据大于172cm的概率为0.48.(3)因为样本的平均数为170.1cm,标准差为5.6cm,所以可以估计该中学这个同年龄的高度约为170.1cm,偏差约为5.6cm.3.某高校有甲、乙两个数学建模兴趣班.其中甲班有40人,乙班50人.现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是分.解:填85.4.假设你是一名交通部门的工作人员,你打算向市长报告国家对本市26个公路项目投资的平均资金数额,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西南医科大学《微机原理及接口》2023-2024学年第一学期期末试卷
- 西南交通大学《计算机辅助设计》2019-2020学年第一学期期末试卷
- 西京学院《景观小品设计》2021-2022学年第一学期期末试卷
- 西京学院《插画设计》2023-2024学年第一学期期末试卷
- 西华大学《计算机组成原理》2022-2023学年第一学期期末试卷
- 西北大学《物理讲坛》2021-2022学年第一学期期末试卷
- 精细化工发展潜力分析
- 数字电压表的课程设计
- 中国生活用纸行业投资前景分析及未来发展趋势研究报告(智研咨询发布)
- 《农药基础知识》课件
- 电脑绣花机安全操作规程.doc
- 【定岗定编】企业定岗定编中出现的问题及改进
- (完整版)企业破产流程图(四张)
- JJF 1617-2017电子式互感器校准规范(高清版)
- 外贸企业出口业务自查表
- 第六讲-爱情诗词与元好问《摸鱼儿》
- 学习贯彻2021年中央经济工作会议精神领导讲话稿
- 复式交分道岔的检查方法
- 高一物理必修1期末复习题库
- 模拟真实天平(flash模拟型课件)
- 芭蕾舞介绍-PPT
评论
0/150
提交评论