




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版九年级上册数学第二十三章测试卷一、单选题1.将下面图按顺时针方向旋转90°后得到的是()A. B. C. D.2.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是()A.等腰三角形 B.正三角形 C.等腰梯形 D.菱形3.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D4.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则B′的坐标为()A.(2,4) B.(-2,4) C.(4,2) D.(2,-4)5.将点P(-2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A.(-5,-3) B.(1,-3) C.(-1,-3) D.(5,-3)6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30° B.60° C.90° D.150°7.如图,在矩形ABCD中,AD=4,DC=3,将△ADC按逆时针绕点A旋转到△AEF(A、B、E在同一直线上),连接CF,则CF的长为()A. B.5 C.7 D.8.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,那么∠BAB′的度数为()A.30° B.35° C.40° D.50°9.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.10.如图,在4×4正方形网格中,将图中的2个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么符合条件的小正方形共有()A.7个 B.8个 C.9个 D.10个二、填空题11.如图,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____次旋转而得到的,每一次旋转____度.12.如图,点A、B、C、D、O都在方格纸的格点上,若是由绕点O按顺时针方向旋转而得到的,则旋转的角度为__.13.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AC=2cm.现在将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为_____.14.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是_____.15.已知点P(a,-3)和Q(4,b)关于原点对称,则=_____.16.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,求点B′的坐标.17.如图,在等边△ABC中,D是AC边上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=10,BD=9,则△AED的周长是______.18.如图所示,两个边长都为4cm的正方形ABCD和正方形OEFG,O是正方形ABCD的对称中心,则图中阴影部分的面积为_______cm2.三、解答题19.如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.(1)求证:△ADE≌△ABF;(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?20.如图,在△ABC中,AD是BC边上的中线.(1)画出与△ACD关于点D成中心对称的三角形;(2)找出与AC相等的线段;(3)探究:△ABC中AB与AC的和与中线AD之间有何大小关系?并说明理由.(4)若AB=5,AC=3,求线段AD的长度范围.21.如图,P是矩形ABCD下方一点,将△PCD绕点P顺时针旋转60°后,恰好点D与点A重合,得到△PEA,连接EB,问:△ABE是什么特殊三角形?请说明理由.22.在△AOB中,C,D分别是OA、OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.如图,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点.求证:(1)AC′=BD′;(2)AC′⊥BD.23.如图所示:已知∠ABC=120°,作等边△ACD,将△ACD旋转60°,得到△CDE,AB=3,BC=2,求BD和∠ABD.24.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC绕原点逆时针旋转90°,得到△A1B1C1,将△A1B1C1向右平移6个单位,再向上平移2个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2;(2)△ABC经旋转、平移后点A的对应点分别为A1、A2,请写出点A1、A2的坐标;(3)P(a,b)是△ABC的边AC上一点,△ABC经旋转、平移后点P的对应点分别为P1,P2,请写出点P1、P2的坐标.25.如图,四边形ABCD是正方形,△ADF绕着点A顺时旋转90°得到△ABE,若AF=4,AB=7.(1)求DE的长度;(2)指出BE与DF的关系如何?并说明由.参考答案1.A【分析】根据旋转的意义,找出图中眼,眉毛,嘴5个关键处按顺时针方向旋转90°后的形状即可选择答案.【详解】根据旋转的意义,图片按顺时针方向旋转90度,即正立状态转为顺时针的横向状态,从而可确定为A图.故选A.【点睛】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.2.D【详解】等腰三角形是轴对称图形,正三角形是轴对称图形,等腰梯形是轴对称图形,菱形既是中心对称图形又是轴对称图形,故选D.3.B【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.4.C【分析】根据矩形的特点和旋转的性质来解决.【详解】如图,矩形的对边相等,B′C′=OA=4,A′B′=OC=2,∴点B′的坐标为(4,2)故选C.【点睛】需注意旋转前后线段的长度不变,第一象限内点的符号为(+,+).5.C【详解】解:∵点P(-2,3)向右平移3个单位得到点,∴,∵点与点关于原点对称,∴故选C.6.B【分析】根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.【详解】∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.【点睛】本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.7.A【分析】由于△ADC按逆时针方向绕点A旋转到△AEF,显然△ADC≌△AEF,则有∠EAF=∠DAC,AF=AC,那么∠EAF+∠EAC=∠DAC+∠EAC,即∠FAC=∠BAD=90°.在Rt△ACD中,利用勾股定理可求AC,同理在Rt△FAC中,利用勾股定理可求CF.【详解】∵△ADC按逆时针方向绕点A旋转到△AEF,∴△ADC≌△AEF,∴∠EAF=∠DAC,AF=AC,∴∠EAF+∠EAC=∠DAC+∠EAC,∴∠FAC=∠BAD,又∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠FAC=90°,又∵在Rt△ADC中,AC=,∴在Rt△FAC中,CF=.故选A.【点睛】本题利用了勾股定理、全等三角形的性质等知识.8.C【详解】解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°-2∠C′CA=40°.故选C.9.D【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.是轴对称图形,但不是中心对称图形,故不符合题意;B.不是轴对称图形,是中心对称图形,故不符合题意;C.是轴对称图形,但不是中心对称图形,故不符合题意;D.既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.10.D【分析】根据轴对称的性质画出图形即可.【详解】如图,共有10种符合条件的添法,故选D.【点睛】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.11.四;72【详解】解:根据题意,五角星的顶点是一个正五边形的五个顶点,这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过四次旋转而得到,每次旋转的度数为360°除以5,为72度.12.90°【分析】由是由绕点按顺时针方向旋转而得到,再结合已知图形可知旋转的角度是的大小,然后由图形即可求得答案.【详解】∵△COD是由△AOB绕点O按逆时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°,故答案为90°.【点睛】本题考查了旋转的性质.解此题的关键是理解△COD是由△AOB绕点O按顺时针方向旋转而得的含义,找到旋转角.13..【分析】由题意可得△AA'C是等边三角形,可得旋转角为60°,可得△BCB'是等边三角形,可得∠A'BB'=90°,根据勾股定理可得BB'的长.【详解】∵∠ACB=90°,∠ABC=30°,AC=2cm∴∠A=60°,AB=4,∵△ABC绕点C逆时针旋转至△A′B′C′∴A'C=60°,A'B'=4,BC=B'C,∠ACA'=∠BCB'∵AC=A'C,∠A=60°∴△ACA'是等边三角形,∴∠ACA'=60°,AA'=2∴A'B=2,∠BCB'=60°,且BC=CB'∴△BCB'是等边三角形∴∠CBB'=60°∴∠A'BB'=90°∴BB'=2【点睛】本题考查了旋转的性质,等边三角形的性质,勾股定理,关键是证△A'B'B是直角三角形.14.50°【分析】已知旋转角为80°,即∠DOB=80°,欲求∠α的度数,必须先求出∠AOB的度数,利用三角形内角和定理求解即可.【详解】解:由旋转的性质知:∠A=∠C=110°,∠D=∠B=40°;根据三角形内角和定理知:∠AOB=180°﹣110°﹣40°=30°;已知旋转角∠DOB=80°,则∠α=∠DOB﹣∠AOB=50°.故答案为50°.【点睛】此题主要考查的是旋转的性质,同时还涉及到三角形内角和定理的运用,难度不大.15.1【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】∵点P(a,-3)和Q(4,b)关于原点对称,∴a=-4,b=3,∴(a+b)2010=(-1)2010=1.故答案为1.【点睛】本题主要考查了关于原点对称的点的坐标的特点,比较简单.16.(7,3)【详解】令x=0得y=3,则OA=3,令y=0得,x=4,则OB=4,由旋转的性质可知:O′A=3,O′B′=4.则点B′(7,3).故答案为(7,13).点睛:本题考查坐标与图形变化-旋转、30度的直角三角形的性质等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.17.19.【详解】试题分析:∵将△BCD绕点B逆时针旋转60°得到△BAE∴△BDC≌△BAE∴BE=BD,∠DBE=60°,AE=CD∴△DBE是等边三角形∴DE=BD=9∴△AED的周长=DE+AD+AE=DE+AC=19考点:1、旋转的性质;2、等边三角形的性质18.4.【分析】图中阴影部分的面积不在任意的三角形中,所以需构造三角形,设BC与OE相交于M,CD与OG相交于N,连接OC、OB,则易证△OCN≌△OBM,则阴影部分的面积为△OBC的面积.【详解】设BC与OE相交于M,CD与OG相交于N,连接OC、OB,∵正方形ABCD与正方形OEFG的边长均为4cm∴OB=OC=2cm在△OCN和△OBM中,OB=OC,∠OCN=∠OBM=45°,∠CON=∠BOM∴△OCN≌△OBM,∵O是正方形ABCD的对称中心,△OCB的高等于正方形边长的一半,∴S阴影=S△OBC=S正方形=4cm2.故答案为4.【点睛】把阴影部分的面积转化成三角形的面积是解题的关键.19.详见解析【分析】(1)根据SAS定理,即可证明两三角形全等.(2)将△ADE顺时针旋转后与△ABF重合,A不变,因而旋转中心是A,∠DAB是旋转角,是90度.【详解】(1)证明:在正方形ABCD中,∠D=∠ABC=90°,∴∠ABF=90°.∴∠D=∠ABF=90°.又∵DE=BF,AD=AB,∴△ADE≌△ABF(SAS).(2)将△ADE顺时针旋转90后与△ABF重合,旋转中心是点A.20.(1)△A′BD即为所求(2)A′B=AC(3)AB+AC>2AD(4)1<AD<4.【详解】【试题分析】(1)根据成中心对称的定义,延长AD到A’,使A’D=AD,点C与点B关于点D对称,连接A’B即可,△A′BD即为所求;(2)根据成中心对称的两个图形对应边相等,得A′B=AC;(3)由(2)得:AB+AC=AB+A′B,根据三角形两边之和大于第三边,得AB+A′B>AA’=2AD,即AB+AC>2AD;(4)由(3)得,根据三角形两边之和大于第三边,两边之差小于第三边,得5-3<AA’=2AD<5+3,即2<2AD<8,所以1<AD<4.【试题解析】(1)如图所示,△A′BD即为所求;(2)A′B=AC;(3)AB+AC>2AD,理由:由于△A′BD与△ACD关于点D成中心对称,所以AD=A′D,AC=A′B,在△ABA′中,有AB+A′B>AA′,即AB+AC>AD+A′D,因此AB+AC>2AD;(4)由(3)可得,在△ABA′中,有AB-A′B<AA′<AB+A′B,即AB-AC<2AD<AB+AC,因此有2<2AD<8,所以1<AD<4.【方法点睛】本题目是一道以成中心对称的两个图形为背景,展开研究,涉及到怎样作一个图形关于某个点的中心对称图形,成中心对称图形的性质,三角形的三边关系,涉及的知识面广,知识点多,难度较大.21.解:△ABE是等边三角形.理由如下:………1分由旋转得△PAE≌△PDC∴CD=AE,PD=PA,∠1=∠2……3分∵∠DPA=60°∴△PDA是等边三角形…………4分∴∠3=∠PAD=60°.由矩形ABCD知,CD=AB,∠CDA=∠DAB=90°.∴∠1=∠4=∠2=30°………6分∴AE=CD=AB,∠EAB=∠2+∠4=60°,∴△ABE为等边三角形…………7分【详解】特殊三角形有等腰三角形、等边三角形、直角三角形(等腰直角三角形),此题根据旋转的性质和矩形的性质可知是等边三角形.22.(1)证明见解析;(2)证明见解析.【分析】(1)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;(2)由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论【详解】(1)∵将△OCD绕点O顺时针旋转到△,∴OC=,OD=,∠=∠.∵OA=OB,C、D为OA,OB的中点,∴OC=OD,∴.在△和△中,,∴△≌△,∴=.(2)延长交于E,交BO于F.∵△≌△,∴∠.又∠AFO=∠BFE,∠,∴∠.∴∠BEA=,∴⊥.【点睛】题考查了旋转的性质、全等三角形的判定与性质;熟练掌握旋转的性质,并能进行推理论证是解决问题的关键.23.BD=5.∠BAD=60°【解析】【分析】先根据等边三角形的性质得∠ADC=∠ACD=60°,由于∠ABC=120°,根据四边形内角和得到∠BAD+∠BCD=180°,则∠BAD+∠BCA=120°,再根据旋转的性质得∠BAD=∠ECD,DB=DE,∠BDE=60°,AB=CE,于是有∠BCA+∠ECD+∠ACD=180°,得到B、C、E在同一条直线上,接着证明△BDE为等边三角形得到∠DBE=60°,所以∠BAD=∠ABC﹣∠DBE=60°,BD=BE=BC+CE=BC+AB=5.【详解】∵△ACD是等边三角形,∴∠ADC=∠ACD=60°,∵∠ABC=120°,∴∠BAD+∠BCD=180°,∴∠BAD+∠BCA=120°,∵△ABD绕点D按顺时针方向旋转60°后到△ECD的位置,∴∠BAD=∠ECD,DB=DE,∠BDE=60°,AB=CE,∴∠BCA+∠ECD=120°,∴∠BCA+∠ECD+∠ACD=180°,∴B、C、E在同一条直线上.∵DB=DE,∠BDE=60°,∴△BDE为等边三角形,∴∠DBE=60°,∴∠BAD=∠ABC﹣∠DBE=60°,∴BD=BE=BC+CE=BC+AB=3+2=5.【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 应急救援体系专题汇报
- 院外产后早产儿护理
- 腰椎结核手术护理查房
- 设计师的专业素质
- DB32/T 4650-2024环保净味沥青通用技术规范
- 儿童劳动习惯培养指南
- DB32/T 4643-2024超声波岩盐气溶胶治疗呼吸系统疾病技术规范
- 学校内容的课件
- 新生儿禁食水的护理
- 新媒体环境下2025年广播媒体融合传播的困境与突破研究报告
- 教师读书记录表
- 中心静脉导管(CVC)维护操作流程
- 【工程监理】监理范围、监理内容
- 岩溶处理监理细则
- 走进舞蹈艺术-首都师范大学中国大学mooc课后章节答案期末考试题库2023年
- 市容秩序辅助管理投标方案
- 单位工程的施工组织设计的编制实训
- 工作作风不严谨的表现及改进措施范文(通用5篇)
- 上海交通大学医学院病理生理学习题集
- 学生骑摩托车安全承诺书范本
- 河北永洋特钢集团有限公司产业重组、退城搬迁、装备升级建设项目环境影响报告
评论
0/150
提交评论