版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆环面积教学反思圆环面积教学反思「篇一」同学们例3这道题还有什么不同的方法来解答?3.14×52-3.14×42你对这种算法,有什么看法?我认为这算法是第一种分步计算的综合式能用综合算式是一大进步,谁还有更简单的方法?3.14×(52-42)多简便,只用两步,你们知道这样算的理由是什么?这里运用了乘法分配律,这种算法是第二种方法的简便计算。你真会学运用知识,大家同意他的想法吗?(齐:同意)我还有一种好办法!(学生很兴奋地)3.14×(5+4)!请你说说你的想法我是看出来的,52-42=5+4我们验证一下。是不是其他的算式也有这样的规律,请你验证下,比如:62-52是否与6+5相等;102-82是否与10+8相等我们试了,第一题行,第二题是不行的我们看出,两数相差1时,行的,差2就有行了你的意思我明白,但表达上有问题,应该说当两数相差1时,两个算式相等,当两数相差2时,两处算式不相等,我们应该用规范的语言来表达。那么,请大家算一算,多少?102-82等于3636与10、8有什么联系?36=(10+8)×22与10、8有什么联系?10减8等于2师写公式,你能举例说明吗?我们写了几个算式能证明这处算式成立,52-32=(5+3)×(5-3)122-82=(12+8)×(12-8)大家是不是都认为这样的算式是成立的?(齐:同意)那么请你用一句话来概括你们所发现的规律![课后反思]本课的教学任务是引导学生理解圆环面积的计算方法,学会计算圆的面积,而在实际的课堂教学中却不知不觉中让学生经历了平方差公式推导验证的过程,这本来是初中的数学知识,可是无意在小学的数学课堂上生成了,我顺着学生的思路,在师生互动的教学过程中让学生体验了一回发现数学,生成数学的感受。圆环面积教学反思「篇二」首先,给学生创设学习情境,要突出情境中数学的本质问题。然后,创设的学习情境,要能促进学生情感的培养。要尽可能赋予其丰富的情感因素,用数学的情感去吸引学生,激起他们学习数学的热情,体会学习数学的乐趣。都说课堂是学生思维成长的土壤,我们教师的智慧是阳光和雨露,数学课更是如此。本节课我感觉有几个思考的地方。1、学生展示课前研究的时候,不能与下面的同学展开互动,致使课堂气氛不够活跃。2、圆环是否一定是个同心圆?如果不是同心圆,它还是圆环吗?事实上,如果不是同心圆,也一样可以求出两个圆之间的距离,也就是说大圆面积减去小圆面积。3、可以利用学生做的圆环来贯穿下面的练习。首先可以让他们量出他们做的圆环的大小半径和环宽,这样就可以形象地让学生理解环宽的概念。避免了我在练习中涉及环宽的概念而说不清楚的尴尬。然后可以求出圆环的面积,这样学生就通过实际操作,真正理解了圆环的面积计算。达到理想的效果。4、3。14×(R2—r2)这个公式还是出现比较好。学生可以更清楚地运用这个简单的运算方法。圆环面积教学反思「篇三」本节课的学习目标是认识圆环,掌握圆环面积的计算方法;利用圆环面积的知识解决生活中的实际问题。一上课,我先让学生进行快乐填空,把圆的面积计算公式以及直径与半径的关系作为知识铺垫,预习展示环节设计了三道小题,掌握了圆的面积计算方法,紧接着就设计了两道计算题,一道是已知半径求面积,一道是已知直径求面积,每组的1号同学板演,2号批改。结果发现知识掌握比较牢固。第三个小题是检测对新知识的预习效果,画出圆环的外圆半径。学生经过预习展示,收获颇多。课堂顺利进入交流展示环节,我首先组织大家小组合作说说圆环的特点,并讨论圆环面积的计算方法。汇报展示时根据同学们的总结课件出示圆环的特点,两个圆的圆心在同一个点上,也就是同心圆。俩圆之间的距离处处相等。然后先自主学习例2,独立计算圆环的面积,这时,我让每组的2号同学板演。当大多数同学都准确计算出结果时,我看着讲台上的4位同学,心里一愣,怎么会是这个结果呢?刚才如果让4号上台多好啊!时间的关系我立即让他们停了下来,通过评讲发现,4人中仅有一人做对了,其余三人都是计算错误。这也暴露了一个问题,三位数乘法计算掌握的不够好,有的计算了两位就写出了结果,有的虽然计算方法正确,但准确率低。对照学生的板书,我及时让大家观察,怎样计算比较简便?大家一致认为郭江龙的计算简便,他利用了乘法分配率使运算简便。为了让学生好记,我和学生又一起推导出圆环的面积计算公式:S环=3。14×(R2—r2)。然后,看着公式我又追问:要想求圆环的面积,必须知道什么条件?学生异口同声答道:必须知道R和r。如果没告诉怎么办?学生一起研究R、r和环宽之间的关系。得出:R—r=环宽。课堂进入反馈展示环节,我放手让学生自己独立完成两个习题,结果做的还是不理想,很多同学出错。反思一下自己的教学,原因有三点:1、第一小题是告诉了大圆的直径和小圆的直径,没有直接告诉R和r,必须先求出来,比例题多了两步,造成有些学生列综合算式出错。2、圆环这节课虽然比较简单,但毕竟是一节新授课,学生原来对这方面的知识一无所知。每一点,每一步都需要老师的指导、演示。3、要提高计算能力,还必须牢记一些常用的数字,如2π、3π……9π以及计算公式。在教育过程中,一定要遵守教育教学规律,不能操之过急,不能拿自己的水平去要求学生。学生的学习需要一个循序渐进、螺旋上升的过程。只有这样,学生才会进步,才会有收获。圆环面积教学反思「篇四」圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。环形的特征:必须是同心圆,其次,两个圆之间的距离处处相等。在此提出了一个概念“环宽”,让学生在环形图中认识了“环宽”。在此我有效的利用课件进行对比演示加深学生对环形特征的理解。非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。练习环节,是应用公式解决问题的环节。为了让学生正确应用大半径、小半径、“环宽”,练习时除了设计基础的练习与判断题还设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。不足之处:练习题没能全部完成,导致没有实现练习的层次性。其实,我准备了不同的有关环形的练习题,由于在刚开始时为了照顾到大多数学生的学习程度,动手操作的时间给的充足,所以到练习题时时间不充分。这节课有许多欣喜的地方,也有令我遗憾的地方。但不遗憾的是我从中发现了自身的缺点,使自己在今后的教学中能逐步改进,日趋完善,使自己更上一层楼。圆环面积教学反思「篇五」1、大多数学生对圆环的认识已经有了生活的经验,但是对于它的形成过程缺少理性思考。通过本节课的训练,达到了感性与理性的统一。2、学生已经学习了圆的面积及其应用。所以很容易接受圆环面积的计算方法。但是部分学生由于空间想象力欠佳,对于已知内圆直径和环宽求外圆直径及已知外圆直径和环宽求内圆直径,概念模糊,学得很吃力,我想,对于这样的实际问题,应该引导学生多画一些简单的示意图来理解,避免解题错误。3、对于题意深奥的题目,不要求每个学生必须做得到或者做得好,应因人而异,因材施教,把学生分层对待,分层测试,让后进的学生也同样有胜利感和成就感。圆环面积教学反思「篇六」《圆环面积的计算》是在学生学习了圆的面积的基础进行教学的。我利用多媒体图片播放各类图片,创设学习环境,凸显情景教学的本质问题,创设情境的目的是为了引发学生探究数学问题的兴趣。通过动手操作引出圆环。然后由几个图形的比较,学生通过仔细观察,发现圆环的特点,激发了学生的学习兴趣。引导学生通过操作、交流、讨论、合作学习等方式再通过引导学生主动探究,发现圆环面积的计算方法,回想圆的面积的探索过程,你能得到启发,分一分、剪一剪、拼一拼,看能不能得到环形面积计算的另一种方法。小组合作探究,通过画两个大小不同的同心圆,分圆,剪出环形,拼成近似的平行四边形或拼成近似的长方形,观察边的变化。通过这样的操作、观察,经历了图形的变换过程,并认识到环形的面积的求法。学生在此过程中,激活了已有的知识和生活经验,沟通了新旧知识的联系本节课我感觉还有几个值得探讨的地方:1,列举生活中的圆环放在哪里更适合?2,圆环是否一定是个同心圆,如果不是同心圆,他还是圆环吗?事实上,如果不是同心圆,也一样可以求出两个圆之间部分的面积,也是用大圆面积减去小圆面积。3,在拿到学生的作业在台上展示时,是否应该先出示正确的解答?如果给他们的第一思维呈现出正确的知识,然后再呈现错误的解答,这样学生就能更清晰的掌握方法和知识点。圆环面积教学反思「篇七」圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。弗赖登塔尔强调,学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。因此,我在认识圆环的设计中安排了经历剪圆环的动手操作过程。剪切的设计目的是使学生通过剪环形的过程知道环形是怎样得到的,从而为下面求环形的面积作铺垫。在这个过程中学生们能自主合作,探究新知,培养了动手操作能力及合作意识。由于学生体验了剪环形的整个过程,所以在我提出怎样求环形的面积时,学生能很快说出“大圆的面积—小圆的面积=环形的面积”。这个过程使我感到在学习关于几何图形的知识,要让学生看一看,摸一摸,做一做。在实际操作中学到的知识比我们直接传授给他们记得要更清楚、牢固。环形的特征:必须是同心圆,其次,两个圆之间的距离处处相等。在此提出了一个概念“环宽”,让学生在环形图中认识了“环宽”。在此我有效的利用课件进行对比演示加深学生对环形特征的理解。非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。虽然,在这个环节耗费了比以往更多的教学时间,但作业反馈很好。没有特别的错误问题出现。看来“做数学”确实能够增进学生对知识的理解和掌握。例题的处理由于学生有了前面的操作感知,所以例题我采用自学的形式进行,让学生尝试计算,分析验证,比较计算方法,归纳并优化计算公式。练习环节,是应用公式解决问题的环节。为了让学生正确应用大半径、小半径、“环宽”,练习时除了设计基础的练习与判断题还设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。不足之处:1、练习题没能全部完成,导致没有实现练习的层次性。其实,我准备了不同的有关环形的练习题,由于在刚开始时为了照顾到大多数学生的学习程度,动手操作的时间给的充足,所以到练习题时时间不充分。设计的一道求半环形面积和一道拓展题没完成。2、知识
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《上海航空工业系统》课件
- 【项目方案】合同能源托管模式下开展校园综合能源建设方案-中教能研院
- 擎苍社工作计划
- 《全景新视野》课件
- 超市201年度工作计划
- 新学期大学生学生会工作计划
- 办公室教育工作计划
- 2024小学精神文明建设工作计划开头语
- 建筑施工企业年度工作计划
- 2024年小学六年级上学期班主任工作计划范文
- 《冠心病的康复》课件
- 铁路客运服务英语车站篇(Project One-1)
- 六年级上册美术教案- 18纸柱造型 |苏少版
- 建筑电气施工图(1)课件
- 质量管理体系运行奖惩考核办法课案
- 送达地址确认书(样本)
- 压力管道焊接标准工艺规范规程
- 合规培训课件
- 五年级上册数学课件-7.1 用列举的策略解决问题丨苏教版 (共15张PPT)
- 2020锅炉年度自检报告
- 全国临床细菌学室间质量评价(EQA)结果报告
评论
0/150
提交评论