版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省马鞍山二中、安师大附中高考数学押题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,分别是中,,所对边的边长,则直线与的位置关系是()A.平行 B.重合C.垂直 D.相交但不垂直2.执行下面的程序框图,则输出的值为()A. B. C. D.3.已知集合,集合,若,则()A. B. C. D.4.过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则()A. B. C. D.5.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值为2,则输出的值为A. B. C. D.6.若时,,则的取值范围为()A. B. C. D.7.已知函数,.若存在,使得成立,则的最大值为()A. B.C. D.8.已知复数满足,则=()A. B.C. D.9.已知下列命题:①“”的否定是“”;②已知为两个命题,若“”为假命题,则“”为真命题;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题.其中真命题的序号为()A.③④ B.①② C.①③ D.②④10.已知的展开式中的常数项为8,则实数()A.2 B.-2 C.-3 D.311.已知复数,则的虚部是()A. B. C. D.112.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数(R,)满足,且的最小值等于,则ω的值为___________.14.定义在R上的函数满足:①对任意的,都有;②当时,,则函数的解析式可以是______________.15.设O为坐标原点,,若点B(x,y)满足,则的最大值是__________.16.在中,角,,的对边长分别为,,,满足,,则的面积为__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,不等式恒成立.(1)求证:(2)求证:.18.(12分)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.19.(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;(2)若点,为曲线上两动点,且满足,求面积的最大值.20.(12分)已知抛物线C:x24py(p为大于2的质数)的焦点为F,过点F且斜率为k(k0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.(1)求点G的轨迹方程;(2)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.21.(12分)已知函数,(1)证明:在区间单调递减;(2)证明:对任意的有.22.(10分)直线与抛物线相交于,两点,且,若,到轴距离的乘积为.(1)求的方程;(2)设点为抛物线的焦点,当面积最小时,求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直考点:直线与直线的位置关系2、D【解析】
根据框图,模拟程序运行,即可求出答案.【详解】运行程序,,
,,,,,结束循环,故输出,故选:D.【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.3、A【解析】
根据或,验证交集后求得的值.【详解】因为,所以或.当时,,不符合题意,当时,.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题.4、C【解析】
作,;,由题意,由二倍角公式即得解.【详解】由题意,,准线:,作,;,设,故,,.故选:C【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.5、C【解析】
由题意,模拟程序的运行,依次写出每次循环得到的,的值,当时,不满足条件,跳出循环,输出的值.【详解】解:初始值,,程序运行过程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循环,输出的值为其中①②①—②得.故选:.【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到,的值是解题的关键,属于基础题.6、D【解析】
由题得对恒成立,令,然后分别求出即可得的取值范围.【详解】由题得对恒成立,令,在单调递减,且,在上单调递增,在上单调递减,,又在单调递增,,的取值范围为.故选:D【点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.7、C【解析】
由题意可知,,由可得出,,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出,构造函数,利用导数求出函数在上的最大值即可得解.【详解】,,由于,则,同理可知,,函数的定义域为,对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,,则,,则,构造函数,其中,则.当时,,此时函数单调递增;当时,,此时函数单调递减.所以,.故选:C.【点睛】本题考查代数式最值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.8、B【解析】
利用复数的代数运算法则化简即可得到结论.【详解】由,得,所以,.故选:B.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.9、B【解析】
由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断.【详解】“”的否定是“”,正确;已知为两个命题,若“”为假命题,则“”为真命题,正确;“”是“”的必要不充分条件,错误;“若,则且”是假命题,则它的逆否命题为假命题,错误.故选:B.【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.10、A【解析】
先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为展开式的常数项,从而求出的值.【详解】展开式的通项为,当取2时,常数项为,当取时,常数项为由题知,则.故选:A.【点睛】本题考查了两个二项式乘积的展开式中的系数问题,其中对所取的项要进行分类讨论,属于基础题.11、C【解析】
化简复数,分子分母同时乘以,进而求得复数,再求出,由此得到虚部.【详解】,,所以的虚部为.故选:C【点睛】本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.12、B【解析】
推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率.【详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个,基本事件总数,6和28恰好在同一组包含的基本事件个数,∴6和28恰好在同一组的概率.故选:B.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
利用辅助角公式化简可得,由题可分析的最小值等于表示相邻的一个对称中心与一个对称轴的距离为,进而求解即可.【详解】由题,,因为,,且的最小值等于,即相邻的一个对称中心与一个对称轴的距离为,所以,即,所以,故答案为:1【点睛】本题考查正弦型函数的对称性的应用,考查三角函数的化简.14、(或,答案不唯一)【解析】
由可得是奇函数,再由时,可得到满足条件的奇函数非常多,属于开放性试题.【详解】在中,令,得;令,则,故是奇函数,由时,,知或等,答案不唯一.故答案为:(或,答案不唯一).【点睛】本题考查抽象函数的性质,涉及到由表达式确定函数奇偶性,是一道开放性的题,难度不大.15、【解析】,可行域如图,直线与圆相切时取最大值,由16、.【解析】
由二次方程有解的条件,结合辅助角公式和正弦函数的值域可求,进而可求,然后结合余弦定理可求,代入,计算可得所求.【详解】解:把看成关于的二次方程,则,即,即为,化为,而,则,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(负的舍去),.故答案为.【点睛】本题主要考查一元二次方程的根的存在条件及辅助角公式及余弦定理和三角形的面积公式的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】
(1)先根据绝对值不等式求得的最大值,从而得到,再利用基本不等式进行证明;(2)利用基本不等式变形得,两边开平方得到新的不等式,利用同理可得另外两个不等式,再进行不等式相加,即可得答案.【详解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即两边开平方得.同理可得,.三式相加,得.【点睛】本题考查绝对值不等式、应用基本不等式证明不等式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和推理论证能力.18、(1);(2).【解析】
(1)对范围分类整理得:,分类解不等式即可.(2)利用已知转化为“当时,”恒成立,利用绝对值不等式的性质可得:,问题得解.【详解】当时,,当时,由得,解得;当时,无解;当时,由得,解得,所以的解集为(2)的解集包含等价于在上恒成立,当时,等价于恒成立,而,∴,故满足条件的的取值范围是【点睛】本题主要考查了含绝对值不等式的解法,还考查了转化能力及绝对值不等式的性质,考查计算能力,属于中档题.19、(1);(2)【解析】
(1)消去参数,将圆的参数方程,转化为普通方程,再由圆心到直线的距离等于半径,可求得圆的普通方程,最后利用求得圆的极坐标方程.(2)利用圆的参数方程以及辅助角公式,由此求得的面积的表达式,再由三角函数最值的求法,求得三角形面积的最大值.【详解】(1)由题意得:,:因为曲线和相切,所以,即:;(2)设,所以所以当时,面积最大值为【点睛】本小题主要考查参数方程转化为普通方程,考查直角坐标方程转化为极坐标方程,考查利用参数的方法求三角形面积的最值,属于中档题.20、(1)(2)当G点横坐标为整数时,S不是整数.【解析】
(1)先求解导数,得出切线方程,联立方程得出交点G的轨迹方程;(2)先求解弦长,再分别求解点到直线的距离,表示出四边形的面积,结合点G的横坐标为整数进行判断.【详解】(1)设,则,抛物线C的方程可化为,则,所以曲线C在点A处的切线方程为,在点B处的切线方程为,因为两切线均过点G,所以,所以A,B两点均在直线上,所以直线AB的方程为,又因为直线AB过点F(0,p),所以,即G点轨迹方程为;(2)设点G(,),由(1)可知,直线AB的方程为,即,将直线AB的方程与抛物线联立,,整理得,所以,,解得,因为直线AB的斜率,所以,且,线段AB的中点为M,所以直线EM的方程为:,所以E点坐标为(0,),直线AB的方程整理得,则G到AB的距离,则E到AB的距离,所以,设,因为p是质数,且为整数,所以或,当时,,是无理数,不符题意,当时,,因为当时,,即是无理数,所以不符题意,当时,是无理数,不符题意,综上,当G点横坐标为整数时,S不是整数.【点睛】本题主要考查直线与抛物线的位置关系,抛物线中的切线问题通常借助导数来求解,四边形的面积问题一般转化为三角形的面积和问题,表示出面积的表达式是求解的关键,侧重考查数学运算的核心素养.21、(1)答案见解析.(2)答案见解析【解析】
(1)利用复合函数求导求出,利用导数与函数单调性之间的关系即可求解.(2)首先证,令,求导可得单调递增,由即可证出;再令,再利用导数可得单调递增,由即可证出.【详解】(1)显然时,,故在单调递减.(2)首先证,令,则单调递增,且,所以再令,所以单调递增,即,∴【点睛】本题考查了利用导数研究函数的单调性、利用导数证明不等式,解题的关键掌握复合函数求导,属于难题.22、(1);(2)【解析】
(1)设出两点的坐标,由距离之积为16,可得.利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班级评比活动的公平与公正计划
- 财务报表分析的重要性计划
- 金融产品投资合同三篇
- 新余学院《英语视听说》2021-2022学年第一学期期末试卷
- 新余学院《古代文学文献学》2022-2023学年第一学期期末试卷
- 西南医科大学《环境卫生学》2022-2023学年第一学期期末试卷
- 西南林业大学《居住区景观设计实验》2023-2024学年第一学期期末试卷
- 打螺丝的方法与技巧培训
- 西南交通大学《计算机图形学》2022-2023学年第一学期期末试卷
- 西南交通大学《传热学》2022-2023学年第一学期期末试卷
- 职业技术学院强化课程建设工作三年行动计划 (2024-2026)
- 《国有企业管理人员处分条例》考试题库200题(含答案)
- 2024年高考语文天津卷及答案解析
- 昏迷的应急预案
- 小丑电影课件教学课件
- 关于成立健康管理公司策划书
- 网络词汇论文开题报告
- GB/T 44694-2024群众性体育赛事活动安全评估工作指南
- 2024-2025学年七年级生物上册 第三单元 第一章 第一节 藻类、苔藓和蕨类植物说课稿 (新版)新人教版
- 三甲级综合医院绩效工资分配与考核实施方案
- 广东省广州市2023-2024学年七年级上学期期末考试数学试题(含答案)
评论
0/150
提交评论