版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北保定市容城博奥学校2025届高三下学期第五次调研考试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为()A. B. C. D.2.已知x,y满足不等式,且目标函数z=9x+6y最大值的变化范围[20,22],则t的取值范围()A.[2,4] B.[4,6] C.[5,8] D.[6,7]3.如图,在直三棱柱中,,,点分别是线段的中点,,分别记二面角,,的平面角为,则下列结论正确的是()A. B. C. D.4.已知(),i为虚数单位,则()A. B.3 C.1 D.55.已知非零向量,满足,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解:6.已知实数满足线性约束条件,则的取值范围为()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]7.设,则A. B. C. D.8.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为()A. B. C. D.9.存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是()A. B. C. D.10.已知数列为等差数列,为其前项和,,则()A. B. C. D.11.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知两个单位向量满足,则向量与的夹角为_____________.14.某市公租房源位于、、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,则该市的任意位申请人中,恰好有人申请小区房源的概率是______.(用数字作答)15.已知,如果函数有三个零点,则实数的取值范围是____________16.已知全集,集合,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在中,内角所对的边分别为,若,,且.(1)求的值;(2)求的面积.18.(12分)已知函数.(1)当时,求函数的值域;(2)的角的对边分别为且,,求边上的高的最大值.19.(12分)如图,在四棱锥中,底面是矩形,是的中点,平面,且,.()求与平面所成角的正弦.()求二面角的余弦值.20.(12分)如图,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,(1)求椭圆的方程.(2)当时,求的面积.21.(12分)某校共有学生2000人,其中男生900人,女生1100人,为了调查该校学生每周平均体育锻炼时间,采用分层抽样的方法收集该校100名学生每周平均体育锻炼时间(单位:小时).(1)应抽查男生与女生各多少人?(2)根据收集100人的样本数据,得到学生每周平均体育锻炼时间的频率分布表:时间(小时)[0,1](1,2](2,3](3,4](4,5](5,6]频率0.050.200.300.250.150.05若在样本数据中有38名男学生平均每周课外体育锻炼时间超过2小时,请完成每周平均体育锻炼时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关”?男生女生总计每周平均体育锻炼时间不超过2小时每周平均体育锻炼时间超过2小时总计附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87922.(10分)已知三点在抛物线上.(Ⅰ)当点的坐标为时,若直线过点,求此时直线与直线的斜率之积;(Ⅱ)当,且时,求面积的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数;当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,,是增函数;当时,,是减函数.因此.设,,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,代入,得.设,,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【点睛】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题2、B【解析】
作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.【详解】画出不等式组所表示的可行域如图△AOB当t≤2时,可行域即为如图中的△OAM,此时目标函数z=9x+6y在A(2,0)取得最大值Z=18不符合题意t>2时可知目标函数Z=9x+6y在的交点()处取得最大值,此时Z=t+16由题意可得,20≤t+16≤22解可得4≤t≤6故选:B.【点睛】此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.3、D【解析】
过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案.【详解】解:因为,,所以,即过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,则,0,,,,,,0,,,1,,,,,,,设平面的法向量,则,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故选:D.【点睛】本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.4、C【解析】
利用复数代数形式的乘法运算化简得答案.【详解】由,得,解得.故选:C.【点睛】本题考查复数代数形式的乘法运算,是基础题.5、C【解析】
根据向量的数量积运算,由向量的关系,可得选项.【详解】,,∴等价于,故选:C.【点睛】本题考查向量的数量积运算和命题的充分、必要条件,属于基础题.6、B【解析】
作出可行域,表示可行域内点与定点连线斜率,观察可行域可得最小值.【详解】作出可行域,如图阴影部分(含边界),表示可行域内点与定点连线斜率,,,过与直线平行的直线斜率为-1,∴.故选:B.【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题表示动点与定点连线斜率,由直线与可行域的关系可得结论.7、C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.8、D【解析】
分别求出球和圆柱的体积,然后可得比值.【详解】设圆柱的底面圆半径为,则,所以圆柱的体积.又球的体积,所以球的体积与圆柱的体积的比,故选D.【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.9、D【解析】
根据题意利用垂直直线斜率间的关系建立不等式再求解即可.【详解】因为过点M椭圆的切线方程为,所以切线的斜率为,由,解得,即,所以,所以.故选:D【点睛】本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题.10、B【解析】
利用等差数列的性质求出的值,然后利用等差数列求和公式以及等差中项的性质可求出的值.【详解】由等差数列的性质可得,.故选:B.【点睛】本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.11、B【解析】
或,从而明确充分性与必要性.【详解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分条件故选【点睛】本题考查充分性与必要性,简单三角方程的解法,属于基础题.12、A【解析】
首先求出样本空间样本点为个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.【详解】样本空间样本点为个,具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”,有以下3种位置1____,__1__,____1.剩下2个空位可是0或1,这三种排列的所有可能分别都是,但合并计算时会有重复,重复数量为,事件的样本点数为:个.故不同的样本点数为8个,.故选:A【点睛】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由得,即得解.【详解】由题意可知,则.解得,所以,向量与的夹角为.故答案为:【点睛】本题主要考查平面向量的数量积的计算和夹角的计算,意在考查学生对这些知识的理解掌握水平.14、【解析】
基本事件总数,恰好有2人申请小区房源包含的基本事件个数,由此能求出该市的任意5位申请人中,恰好有2人申请小区房源的概率.【详解】解:某市公租房源位于、、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,该市的任意5位申请人中,基本事件总数,该市的任意5位申请人中,恰好有2人申请小区房源包含的基本事件个数:,该市的任意5位申请人中,恰好有2人申请小区房源的概率是.故答案为:.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,属于中档题.15、【解析】
首先把零点问题转化为方程问题,等价于有三个零点,两侧开方,可得,即有三个零点,再运用函数的单调性结合最值即可求出参数的取值范围.【详解】若函数有三个零点,即零点有,显然,则有,可得,即有三个零点,不妨令,对于,函数单调递增,,,所以函数在区间上只有一解,对于函数,,解得,,解得,,解得,所以函数在区间上单调递减,在区间上单调递增,,当时,,当时,,此时函数若有两个零点,则有,综上可知,若函数有三个零点,则实数的取值范围是.故答案为:【点睛】本题考查了函数零点的零点,恰当的开方,转化为函数有零点问题,注意恰有三个零点条件的应用,根据函数的最值求解参数的范围,属于难题.16、【解析】
根据题意可得出,然后进行补集的运算即可.【详解】根据题意知,,,,.故答案为:.【点睛】本题考查列举法的定义、全集的定义、补集的运算,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)将代入等式,结合正弦定理将边化为角,再将及代入,即可求得的值;(2)根据(1)中的值可求得和,进而可得,由三角形面积公式即可求解.【详解】(1)由,得,由正弦定理将边化为角可得,∵,∴,∴,化简可得,∴解得.(2)∵在中,,∴,∴,∴,∴.【点睛】本题考查了正弦定理在边角转化中的应用,正弦差角公式的应用,三角形面积公式求法,属于基础题.18、(1).(2)【解析】
(1)由题意利用三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域,得出结论.(2)由题意利用余弦定理、三角形的面积公式、基本不等式求得的最大值,可得边上的高的最大值.【详解】解:(1)∵函数,当时,,.(2)中,,∴.由余弦定理可得,当且仅当时,取等号,即的最大值为3.再根据,故当取得最大值3时,取得最大值为.【点睛】本题考查降幂公式、两角和的正弦公式,考查正弦函数的性质,余弦定理,三角形面积公式,所用公式较多,选用恰当的公式是解题关键,本题属于中档题.19、(1).(2).【解析】分析:(1)直接建立空间直角坐标系,然后求出面的法向量和已知线的向量,再结合向量的夹角公式求解即可;(2)先分别得出两个面的法向量,然后根据向量交角公式求解即可.详解:()∵是矩形,∴,又∵平面,∴,,即,,两两垂直,∴以为原点,,,分别为轴,轴,轴建立如图空间直角坐标系,由,,得,,,,,,则,,,设平面的一个法向量为,则,即,令,得,,∴,∴,故与平面所成角的正弦值为.()由()可得,设平面的一个法向量为,则,即,令,得,,∴,∴,故二面角的余弦值为.点睛:考查空间立体几何的线面角,二面角问题,一般直接建立坐标系,结合向量夹角公式求解即可,但要注意坐标的正确性,坐标错则结果必错,务必细心,属于中档题.20、(1)(2)【解析】
(1)先求出圆心到直线的距离为,再根据得到,解之即得a的值,再根据c=1求出b的值得到椭圆的方程.(2)先求出,,再求得的面积.【详解】(1)因为直线过点,且斜率.所以直线的方程为,即,所以圆心到直线的距离为,又因为,圆的半径为,所以,即,解之得,或(舍去).所以,所以所示椭圆的方程为.(2)由(1)得,椭圆的右准线方程为,离心率,则点到右准线的距离为,所以,即,把代入椭圆方程得,,因为直线的斜率,所以,因为直线经过和,所以直线的方程为,联立方程组得,解得或,所以,所以的面积.【点睛】本题主要考查直线和圆、椭圆的位置关系,考查椭圆的方程的求法,考查三角形面积的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.21、(1)男生人数为人,女
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 塑木地板安装服务合同
- 车架买卖合同范例
- 门窗制作安装维修合同范例
- 食品加工行业阀门采购协议
- 生活房出租合同范例
- 金山企业食堂外包合同范例
- 销售免责合同模板
- 门头用工合同范例
- 山东农村建房合同范例
- 银行外包员工合同范例
- (完整版)天文知识竞赛题目(附答案)
- 医疗废物处理与处置规范
- 2024年国家公务员考试《行测》真题卷(副省级)答案及解析
- 超市的市场调研报告7篇
- 《成对数据的统计分析》章末复习课件
- 2024年信息系统安全保密制度(三篇)
- 2024年中国树脂行业市场规模及发展前景研究报告(智研咨询)
- 2024年安全员A证试题库(附答案)
- 2024-2025学年人教版七年级地理上册知识清单
- 2024-2030年中国岩土工程行业发展模式与投资战略规划分析报告
- 北京市《配电室安全管理规范》(DB11T 527-2021)地方标准
评论
0/150
提交评论