版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Page22024届大题强化训练(6)1.在中,内角的对边分别为,.(1)求;(2)若的面积为,求边上的中线的长.【答案】(1)(2)【解析】(1)因,所以,所以,即,所以,由余弦定理及得:,又,所以,即,所以,所以.(2)由,所以,由(1),所以,因为为边上的中线,所以,所以,所以,所以边上的中线的长为:2.定义:在数列中,若存在正整数,使得,都有,则称数列为“型数列”.已知数列满意.(1)证明:数列为“3型数列”;(2)若,数列的通项公式为,求数列的前15项和.【答案】(1)证明见解析(2)【解析】(1)由题知,所以有,且,所以,所以数列为“3型数列”;(2)由(1)知,,所以,,,所以.3.如图,在四棱锥P-ABCD中,底面ABCD为正方形,底面ABCD,,E为线段PB的中点,F为线段BC上的动点.(1)证明:平面平面PBC;(2)若直线AF与平面PAB所成的角的余弦值为,求点P到平面AEF的距离.【答案】(1)证明见解析(2).【解析】(1)因为底面ABCD,平面ABCD,所以.因为ABCD为正方形,所以,又因为,平面PAB,平面PAB,所以平面PAB.因为平面PAB,所以.因为,E为线段PB的中点,所以,又因为,平面PBC,平面PBC,所以平面PBC.又因为平面AEF,所以平面平面PBC.方法二:因为底面ABCD,平面PAB,所以平面底面ABCD又平面底面,,平面ABCD,所以平面PAB.因为平面PAB,所以.因为,E为线段PB的中点,所以.因为,平面PBC,平面PBC,所以平面PBC,又因为平面AEF,所以平面平面PBC因为底面ABCD,,以A为坐标原点,以的方向分别为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则,设,则,所以,,,,设为平面AEF的法向量,则所以取,则,,则,设为平面PBC的法向量,则所以取,则,,则因为,所以,所以平面平面PBC.(2)(基于(1)解法一、二)因为底面ABCD,,以A为坐标原点,以的方向分别为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则,易知是平面PAB法向量设,则,所以,,所以即,得,所以,设为平面AEF的法向量,则所以平面AEF的法向量,又因为所以点P到平面AEF的距离为,所以点P到平面AEF的距离为.由(1)可知,是直线AF与平面PAB所成的角,所以解得,故F是BC的中点.所以,,的面积为因为,的面积为设点P到平面AEF的距离为h,则有解得所以点P到平面AEF的距离为.(基于(1)解法三)易知是平面PAB的法向量所以,即,解得所以,又因为所以点P到平面AEF的距离为,所以点P到平面AEF的距离为.4.党的二十大已成功闭幕,某市教化系统为深化贯彻党的二十大精神,组织党员开展了“学习二十大”的学问竞赛活动.随机抽取了1000名党员,并依据得分(满分100分)按组别,,,绘制了频率分布直方图(如图),视频率为概率.(1)若此次活动中获奖的党员占参赛总人数20%,试估计获奖分数线;(2)采纳按比例安排的分层随机抽样的方法,从得分不低于80的党员中随机抽取7名党员,再从这7名党员中随机抽取3人,记得分在的人数为,试求的分布列和数学期望.【答案】(1)86(2)分布列见解析,【解析】(1)依据直方图可知,成果在的频率为,成果的频率为0.1,小于0.2,因此获奖的分数线应当介于之间,设分数线为,使得成果在的概率为,即,可得,所以获奖分数线划定为86;(2)应从和两组内分别抽取5人和2人,则的可能取值为0,1,2,,,,的分布列为数学期望5.在平面直角坐标系xOy中,已知圆E:和定点,P为圆E上的动点,线段PF的垂直平分线与直线PE交于点Q,设动点Q的轨迹为曲线C.(1)求曲线C的方程;(2)设曲线C与x轴正半轴交于点A,过点的直线l与曲线C交于点M,N(异于点A),直线MA,NA与直线分别交于点G,H.若点F,A,G,H四点共圆,求实数t的值.【答案】(1)(2)【解析】(1)因为Q在线段PF的中垂线上,所以,故,所以点Q的轨迹是以E,F为焦点的双曲线,其焦距,,且,,故,所以曲线C的方程为.(2)设直线l:,,,联立方程组,整理得,则,且因为F,A,G,H四点共圆,所以,又,所以,故,所以,即,所以.又直线AM:,令,得,同理,故,其中,所以,解得,所以实数t的值为.6.已知函数.(1)若,求证;函数的图象与轴相切于原点;(2)若函数在区间,各恰有一个极值点,求实数的取值范围.【答案】(1)证明见解析(2)【解析】(1)证明:因为,,;又,所以,所以在点处的切线方程为,所以函数的图象与轴相切于坐标原点.(2)先证明不等式恒成立,令,则,当时,,当时,,故在处取得微小值,也是最小值,故,所以,当且仅当时,等号成立,,令,,令,,当时,,故在上为减函数,因为,所以当,即时,,所以为增函数,故,所以为减函数,故函数在无极值点;当时,当,因为为减函数,,,故必存在,使得,当时,,为增函数,当时,,为减函数,而,故,又因为所以必存在,,且当,,为减函数,当,,为增函数,故在区间上有一个微小值点,令,因为,所以在上单调递增,又因为,,所以总存在使,且当时,,单调递减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 流行的老公写给老婆保证书
- 2025版高考物理二轮复习 情境3 技前沿类情境
- 山东省齐河县潘店镇中学2024-2025八年级上学期期末学业检测模拟生物学试题(含答案)
- 高一 人教版 数学 第四单元《无理数指数幂及其运算性质》课件
- 秋冬装产品质量监督抽查实施细则
- 2024届四川省成都市高三第一次诊断性检测理综生物试题
- 《政府采购的方式》课件
- 2025年中考英语一轮教材复习 写作话题1 个人情况
- 《改善提案模板》课件
- 《主推进动力装置》模拟试卷
- 介入导管室护士进修汇报课件
- 肺部感染临床路径
- 高中英语3500词(乱序版)
- 二年级上册《劳动教育》教材分析
- 蛇年大吉平安喜乐
- 2024年认证行业法律法规及认证基础知识
- 外研版高中英语选择性必修一Unit-3-The-road-to-success
- 河北省邯郸市英语中考试题与参考答案(2025年)
- 园区综合节能改造合同模板
- 国家开放大学2024秋《形势与政策》大作业:中华民族现代文明有哪些鲜明特质?建设中华民族现代文明的路径是什么
- PCCP管道安装监理实施细则
评论
0/150
提交评论