版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题5-1平面向量中的高频小题归类目录TOC\o"1-1"\h\u专题5-1平面向量中的高频小题归类 1 1题型一:平面向量的线性运算 1题型二:向量数量积问题(含最值,范围问题) 4题型三:向量的夹角 7题型四:向量模(含最值,范围问题) 8题型五:平面向量的平行与垂直问题 10题型六:三点共线的等价关系 11 14一、单选题 14二、多选题 16三、填空题 16四、双空题 16题型一:平面向量的线性运算【典例分析】例题1.(2022·河南开封·一模(文))已知SKIPIF1<0中,SKIPIF1<0为SKIPIF1<0边上一点,且SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例题2.(2022·河南新乡·一模(理))在△SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分别为边SKIPIF1<0,SKIPIF1<0的中点,且SKIPIF1<0与SKIPIF1<0交于点SKIPIF1<0,记SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例题3.(2022·四川资阳·一模(理))如图,SKIPIF1<0,SKIPIF1<0为以SKIPIF1<0的直径的半圆的两个三等分点,SKIPIF1<0为线段SKIPIF1<0的中点,SKIPIF1<0为SKIPIF1<0的中点,设SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【提分秘籍】平面向量的线性运算主要工具是向量的加,减法:向量加法法则:①三角形法则(首尾相接,首尾连):SKIPIF1<0.②平行四边形法则(作平移,共起点,四边形,对角线):SKIPIF1<0向量减法法则:(共起点,连终点,指向被减向量)SKIPIF1<0【变式演练】1.(2022·河北容城中学模拟预测)在平行四边形SKIPIF1<0中,SKIPIF1<0分别是SKIPIF1<0的中点,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·吉林市教育学院模拟预测(理))如图,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,点E是SKIPIF1<0的三等分点SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·宁夏·石嘴山市第三中学模拟预测(理))在等边SKIPIF1<0中,O为重心,D是SKIPIF1<0的中点,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·全国·模拟预测(理))在SKIPIF1<0中,D为AC的中点,SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0题型二:向量数量积问题(含最值,范围问题)【典例分析】例题1.(2022·湖南·模拟预测)已知直线SKIPIF1<0与圆SKIPIF1<0:SKIPIF1<0相交于不同两点SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0为线段SKIPIF1<0的中点,若平面上一动点SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0的取值范围是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例题2.(2022·全国·模拟预测)如图,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0为边SKIPIF1<0上的任意一点(包含端点),SKIPIF1<0为SKIPIF1<0的中点,则SKIPIF1<0的取值范围是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例题3.(2022·江西·模拟预测(理))已知圆SKIPIF1<0的半径为2,点SKIPIF1<0满足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分别是SKIPIF1<0上两个动点,且SKIPIF1<0,则SKIPIF1<0的取值范围是(
)A.[6,24] B.[4,22] C.[6,22] D.[4,24]例题4.(2022·上海松江·二模)已知正方形SKIPIF1<0的边长为4,点SKIPIF1<0、SKIPIF1<0分别在边SKIPIF1<0、SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0,若点SKIPIF1<0在正方形SKIPIF1<0的边上,则SKIPIF1<0的取值范围是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例题5.(2022·黑龙江·哈尔滨三中模拟预测(理))已知抛物线SKIPIF1<0:SKIPIF1<0,点SKIPIF1<0为直线SKIPIF1<0上一动点,过点SKIPIF1<0作直线SKIPIF1<0,SKIPIF1<0与抛物线SKIPIF1<0分别切于点SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)A.0 B.1 C.-1 D.0或1【提分秘籍】求两个向量的数量积有三种方法:(1)利用定义(包括向量数量积几何意义)(2)利用向量的坐标运算(自主建系,只要题目有可以建系的条件,可通过建系法求解);(3)利用向量三角不等式SKIPIF1<0(同号同向取等号;异号反向取等号)例如:SKIPIF1<0中间的连接号都是“SKIPIF1<0”,记忆口诀:同号则SKIPIF1<0,SKIPIF1<0同向不等式SKIPIF1<0取到等号;在不等式SKIPIF1<0中,中间的连接号“SKIPIF1<0”和“SKIPIF1<0”,记忆口诀:异号则SKIPIF1<0,SKIPIF1<0反向不等式SKIPIF1<0取到等号;【变式演练】1.(2022·四川·射洪中学模拟预测(理))在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0为线段SKIPIF1<0的中点,SKIPIF1<0,SKIPIF1<0为线段SKIPIF1<0垂直平分线SKIPIF1<0上任一异于SKIPIF1<0的点,则SKIPIF1<0(
)A.SKIPIF1<0 B.4 C.7 D.SKIPIF1<02.(2022·全国·模拟预测)如图,在平行四边形SKIPIF1<0中,SKIPIF1<0,点E是SKIPIF1<0的中点,点F满足SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0(
)A.9 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·北京·人大附中模拟预测)窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术.图1是一张由卷曲纹和回纹构成的正六边形前纸窗花.图2中正六边形SKIPIF1<0的边长为4,圆SKIPIF1<0的圆心为该正六边形的中心,圆SKIPIF1<0的半径为2,圆SKIPIF1<0的直径SKIPIF1<0,点SKIPIF1<0在正六边形的边上运动,则SKIPIF1<0的最小值为(
)A.5 B.6 C.7 D.84.(2022·全国·模拟预测)在SKIPIF1<0中,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0在边SKIPIF1<0上,则SKIPIF1<0的最大值为(
)A.3 B.2 C.SKIPIF1<0 D.SKIPIF1<05.(2022·四川·成都七中一模(文))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0的最小值是_____________.6.(2022·上海崇明·一模)在边长为2的正六边形ABCDEF中,点P为其内部或边界上一点,则SKIPIF1<0的取值范围为______.7.(2022·安徽·全椒县第八中学模拟预测(理))骑自行车是一种环保又健康的运动,如图是某一自行车的平面结构示意图,已知图中的圆SKIPIF1<0(前轮),圆SKIPIF1<0(后轮)的半径均为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0均是边长为SKIPIF1<0的等边三角形.设点SKIPIF1<0为后轮上的一点,则在骑行该自行车的过程中,SKIPIF1<0的最大值为______.题型三:向量的夹角【典例分析】例题1.(2022·广西北海·一模(文))已知向量SKIPIF1<0是单位向量,向量SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0与SKIPIF1<0的夹角为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例题2.(2022·云南大理·模拟预测)已知向量SKIPIF1<0满足SKIPIF1<0,则向量SKIPIF1<0与SKIPIF1<0所成的夹角为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例题3.(2022·浙江·模拟预测)已知平面向量SKIPIF1<0满足:SKIPIF1<0,若对满足条件的任意向量SKIPIF1<0,SKIPIF1<0恒成立,则SKIPIF1<0的最小值是______________.【提分秘籍】求向量夹角公式:SKIPIF1<0【变式演练】1.(2022·全国·模拟预测(理))已知平面向量SKIPIF1<0与SKIPIF1<0互相垂直,模长之比为2:1,若SKIPIF1<0,则SKIPIF1<0与SKIPIF1<0的夹角的余弦值为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·山东德州·模拟预测)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·湖南·模拟预测)已知向量SKIPIF1<0,SKIPIF1<0满足SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0与SKIPIF1<0的夹角的最大值为(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·广西北海·一模(理))已知向量SKIPIF1<0是单位向量,向量SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0与SKIPIF1<0的夹角为_____________.题型四:向量模(含最值,范围问题)【典例分析】例题1.(2022·浙江绍兴·一模)已知向量SKIPIF1<0,SKIPIF1<0满足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.1 D.SKIPIF1<0例题2.(2022·山东·德州市教育科学研究院三模)已知平面向量SKIPIF1<0,SKIPIF1<0,且非零向量SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0的最大值是(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.2例题3.(2022·四川资阳·一模(理))已知平面向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0满足SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0的最大值为______.例题4.(2022·浙江绍兴·一模)已知圆SKIPIF1<0:SKIPIF1<0,线段SKIPIF1<0在直线SKIPIF1<0:SKIPIF1<0上运动,点SKIPIF1<0为线段SKIPIF1<0上任意一点,若圆SKIPIF1<0上存在两点SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,则线段SKIPIF1<0长度的最大值是______.例题5.(2022·江西南昌·模拟预测(文))已知SKIPIF1<0为正交基底,且SKIPIF1<0,SKIPIF1<0分别为SKIPIF1<0的中点,若SKIPIF1<0,则SKIPIF1<0的最小值为_____.【提分秘籍】求两个向量的模方法:(1)SKIPIF1<0可通过基底法表示向量求模,也可通过建系法用坐标表示向量求模(2)利用向量三角不等式SKIPIF1<0(同号同向取等号;异号反向取等号)例如:SKIPIF1<0中间的连接号都是“SKIPIF1<0”,记忆口诀:同号则SKIPIF1<0,SKIPIF1<0同向不等式SKIPIF1<0取到等号;在不等式SKIPIF1<0中,中间的连接号“SKIPIF1<0”和“SKIPIF1<0”,记忆口诀:异号则SKIPIF1<0,SKIPIF1<0反向不等式SKIPIF1<0取到等号;【变式演练】1.(2022·全国·大化瑶族自治县高级中学模拟预测(文))已知点A、B在单位圆上,SKIPIF1<0,若SKIPIF1<0,则SKIPIF1<0的最小值是(
)A.2 B.3 C.SKIPIF1<0 D.42.(2022·河南·平顶山市第一高级中学模拟预测(文))已知A,B为圆SKIPIF1<0上的两动点,SKIPIF1<0,点P是圆SKIPIF1<0上的一点,则SKIPIF1<0的最小值是(
)A.2 B.4 C.6 D.83.(2022·浙江·乐清市知临中学模拟预测)平面向量SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0与SKIPIF1<0夹角最大值时SKIPIF1<0为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·海南华侨中学模拟预测)已知不共线的平面向量SKIPIF1<0两两所成的角相等,且SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.2 C.3 D.2或35.(2022·浙江·三门县观澜中学模拟预测)已知SKIPIF1<0为单位向量,SKIPIF1<0满足SKIPIF1<0,当SKIPIF1<0与SKIPIF1<0的夹角最大时,SKIPIF1<0_________.题型五:平面向量的平行与垂直问题【典例分析】例题1.(2022·黑龙江·哈尔滨三中模拟预测)已知向量SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,若SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例题2.(2022·江苏·扬州中学模拟预测)已知向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.2 C.8 D.SKIPIF1<0例题3.(2022·四川省绵阳八一中学模拟预测(理))已知向量SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0___________.例题4.(2022·陕西渭南·一模(文))已知点SKIPIF1<0,SKIPIF1<0,向量SKIPIF1<0,若SKIPIF1<0,则实数SKIPIF1<0等于___________.【提分秘籍】两个向量平行、垂直的坐标表示已知非零向量SKIPIF1<0,(1)SKIPIF1<0.(2)SKIPIF1<0【变式演练】1.(2022·贵州贵阳·模拟预测(文))已知平面向量SKIPIF1<0,若SKIPIF1<0与SKIPIF1<0垂直,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·江苏·南京市江宁高级中学模拟预测)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0的值为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·四川绵阳·一模(理))已知向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0______.4.(2022·广东茂名·二模)已知向量SKIPIF1<0(t,2t),SKIPIF1<0=(﹣t,1),若(SKIPIF1<0﹣SKIPIF1<0)⊥(SKIPIF1<0+SKIPIF1<0),则t=_____.题型六:三点共线的等价关系【典例分析】例题1.(2022·陕西·汉阴县第二高级中学一模(理))已知SKIPIF1<0是SKIPIF1<0内一点,SKIPIF1<0,若SKIPIF1<0与SKIPIF1<0的面积之比为SKIPIF1<0,则实数SKIPIF1<0的值为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例题2.(2022·河南·南阳中学模拟预测(文))SKIPIF1<0中,若SKIPIF1<0,点SKIPIF1<0满足SKIPIF1<0,直线SKIPIF1<0与直线SKIPIF1<0相交于点SKIPIF1<0,则SKIPIF1<0的长(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例题3.(2022·吉林·东北师大附中模拟预测)在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分别是边SKIPIF1<0,SKIPIF1<0上的点,且SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0是线段SKIPIF1<0上异于端点的一点,且满足SKIPIF1<0,则SKIPIF1<0_________.例题4.(2022·湖南·雅礼中学一模)在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0在边SKIPIF1<0上,延长SKIPIF1<0到SKIPIF1<0,使得SKIPIF1<0,若SKIPIF1<0(SKIPIF1<0为常数),则SKIPIF1<0的长度是________.【提分秘籍】设平面上三点SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不共线,则平面上任意一点SKIPIF1<0与SKIPIF1<0,SKIPIF1<0共线的充要条件是存在实数SKIPIF1<0与SKIPIF1<0,使得SKIPIF1<0,且SKIPIF1<0.特别地,当SKIPIF1<0为线段SKIPIF1<0的中点时,SKIPIF1<0.【变式演练】1.(2022·山东烟台·三模)如图,边长为2的等边三角形的外接圆为圆SKIPIF1<0,SKIPIF1<0为圆SKIPIF1<0上任一点,若SKIPIF1<0,则SKIPIF1<0的最大值为(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.12.(2022·安徽·合肥市第六中学模拟预测(理))如图,在SKIPIF1<0中,M,N分别是线段SKIPIF1<0,SKIPIF1<0上的点,且SKIPIF1<0,SKIPIF1<0,D,E是线段SKIPIF1<0上的两个动点,且SKIPIF1<0,则SKIPIF1<0的的最小值是(
)A.4 B.SKIPIF1<0 C.SKIPIF1<0 D.23.(2022·山东滨州·二模)在SKIPIF1<0中,M为BC边上任意一点,N为线段AM上任意一点,若SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),则SKIPIF1<0的取值范围是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·河南·安阳一中模拟预测(文))在SKIPIF1<0中,点D在BC上,且满足SKIPIF1<0,点E为AD上任意一点,若实数x,y满足SKIPIF1<0,则SKIPIF1<0的最小值为(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2022·上海市实验学校模拟预测)已知点SKIPIF1<0为SKIPIF1<0的重心,过SKIPIF1<0作直线与SKIPIF1<0、SKIPIF1<0两边分别交于SKIPIF1<0、SKIPIF1<0两点,且SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0的值为________.一、单选题1.(2022·贵州·贵阳六中一模(理))在平行四边形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)A.1 B.-1 C.9 D.-92.(2022·上海普陀·一模)设SKIPIF1<0,若向量SKIPIF1<0、SKIPIF1<0、SKIPIF1<0满足SKIPIF1<0,且SKIPIF1<0,则满足条件的k的取值可以是(
)A.1 B.2 C.3 D.43.(2022·河南·民权县第一高级中学模拟预测(文))已知在平行四边形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)A.6 B.4 C.3 D.24.(2022·全国·模拟预测)已知向量SKIPIF1<0,SKIPIF1<0满足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·云南·昆明一中模拟预测(理))设D为SKIPIF1<0所在平面内一点,SKIPIF1<0,若SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·全国·模拟预测)如图,在SKIPIF1<0中,点D是边AB上一点且SKIPIF1<0,E是边BC的中点,直线AE和直线CD交于点F,若BF是SKIPIF1<0的平分线,则SKIPIF1<0(
)A.4 B.3 C.2 D.SKIPIF1<07.(2022·全国·模拟预测)如图,在平行四边形SKIPIF1<0中,点SKIPIF1<0在线段SKIPIF1<0上,且SKIPIF1<0(SKIPIF1<0),若SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)且SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.48.(2022·江苏盐城·模拟预测)在SKIPIF1<0中,过重心E任作一直线分别交AB,AC于M,N两点,设SKIPIF1<0,SKIPIF1<0,(SKIPIF1<0,SKIPIF1<0),则SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.29.(2022·广西·南宁市第十九中学模拟预测(文))SKIPIF1<0的外心SKIPIF1<0满足SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0的面积为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.210.(2022·河南·一模(理))在SKIPIF1<0中,SKIPIF1<0,点SKIPIF1<0在线段SKIPIF1<0上且与端点不重合,若SKIPIF1<0,则SKIPIF1<0的最大值为(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多选题11.(2022·全国·模拟预测)已知过抛物线SKIPIF1<0:SKIPIF1<0的焦点SKIPIF1<0的直线SKIPIF1<0:SKIPIF1<0与抛物线SKIPIF1<0交于SKIPIF1<0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年绿色建筑施工图设计合同模板3篇
- 2025年人民版九年级科学上册阶段测试试卷
- 2024版国际技术合作与授权合同3篇
- 2025年度旅游景区委托招商运营管理协议3篇
- 小学阶段学生心理健康与学业成就的关联研究
- 网上实践课程设计周记范文
- 学校课程安排与教学资源整合的策略研究
- 2025年沪教新版八年级科学上册阶段测试试卷含答案
- 小学数学公式与定理全面解析
- 博瀚教育数学试卷
- 宝宝大便观察及护理课件
- 公司月度安全生产综合检查表
- 开题报告会记录单
- 对话的力量:焦点解决取向在青少年辅导中的应用
- 我的家乡湖北荆门介绍
- (银川市直部门之间交流)2022事业单位工作人员调动表
- 广州市小学生学籍表
- 法律与社会学习通章节答案期末考试题库2023年
- 瓷砖采购投标方案
- 大学生职业生涯规划-自我认知-课件
- 化工设备安装预算定额库
评论
0/150
提交评论