四川省遂宁市2024届高三上学期第一次诊断性考试 数学(理) 含答案_第1页
四川省遂宁市2024届高三上学期第一次诊断性考试 数学(理) 含答案_第2页
四川省遂宁市2024届高三上学期第一次诊断性考试 数学(理) 含答案_第3页
四川省遂宁市2024届高三上学期第一次诊断性考试 数学(理) 含答案_第4页
四川省遂宁市2024届高三上学期第一次诊断性考试 数学(理) 含答案_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

秘密★启用前雅安市高2021级第一次诊断性考试数学(理科)本试卷满分150分,考试时间120分钟。注意事项:1.答卷前,考生务必将自己的姓名、座位号和准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,则()A.B.C.D.2.复数,则()A.1B.C.2D.43.执行如图所示的程序框图,若输入的值为2023,则输出的值为()A.B.C.D.4.甲、乙两个口袋中均装有1个黑球和2个白球,现分别从甲、乙两口袋中随机取一个球交换放入另一口袋,则甲口袋的三个球中帢有两个白球的概率为()A.B.C.D.5.已知数列是等差数列,数列是等比数列,若,则()A.2B.C.D.6.如图,正方形的边长为4,E为的中点,为边上一点,若,则()A.B.C.D.57.“”是“函数的图象关于直线对称”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.已知为双曲线的左、右焦点,点在上,若,的面积为,则的方程为()A.B.C.D.9.甲、乙、丙、丁4个学校将分别组织部分学生开展研学活动,现有五个研学基地供选择,每个学校只选择一个基地,则4个学校中至少有3个学校所选研学基地不相同的选择种数共有()A.420B.460C.480D.52010.若点是函数图象上任意一点,直线为点处的切线,则直线倾斜角的取值范围是()A.B.C.D.11.如图,在正方体中,点是线段上的动点(含端点),点是线段的中点,设与平面所成角为,则的最小值是()A.B.C.D.12.已知为坐标原点,是椭圆的左、右焦点,分别为的左、右顶点.为上一点,且轴,直线与轴交于点,直线与交于点,直线与轴交于点.若,则的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数满足则的最大值为________.14.写出一个同时具有下列性质①②③的函数:________.①偶函数;②最大值为2;③最小正周期是.15.在正四棱台内有一个球与该四棱台的每个面都相切(称为该四棱台的内切球),若,则该四棱台的外接球(四棱台的顶点都在球面上)与内切球的半径之比为________.16.若点为的重心,,则________.三、解答题:共70分。解答应写出文字说明,证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22,23题为选考题,考生依据要求作答。(一)必考题:共60分。17.(12分)某工厂注重生产工艺创新,设计并试运行了甲、乙两条生产线.现对这两条生产线生产的产品进行评估,在这两条生产线所生产的产品中,随机抽取了300件进行测评,并将测评结果(“优”或“良”)制成如下所示列联表:良优合计甲生产线4080120乙生产线80100180合计120180300(1)通过计算判断,是否有的把握认为产品质量与生产线有关系?(2)现对产品进行进一步分析,在测评结果为“良”的产品中按生产线用分层抽样的方法抽取了6件产品.若在这6件产品中随机抽取3件,求这3件产品中产自于甲生产线的件数的分布列和数学期望.附表及公式:0.150.100.050.0250.0102.0722.7063.8415.0246.635其中.18.(12分)已知数列与正项等比数列满足,且________.(1)求与的通项公式;(2)设,求数列的前项和.从①;②这两个条件中任选一个,补充在上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)已知为坐标原点,过点的动直线与抛物线相交于两点.(1)求;(2)在平面直角坐标系中,是否存在不同于点的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由.20.(12分)如图,在三棱柱中,直线平面,平面平面.(1)求证:;(2)若,在棱上是否存在一点,使二面角的余弦值为?若存在,求的值;若不存在,请说明理由.21.(12分)已知函数(其中为实数).(1)若,证明:;(2)探究在上的极值点个数.(二)选考题:共10分。请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题记分。22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,已知曲

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论