版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省绍兴一中2025届高三最后一卷数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,则输出的的值是()A.8 B.32 C.64 D.1282.已知函数fx=sinωx+π6+A.16,13 B.13.已知函数,若恒成立,则满足条件的的个数为()A.0 B.1 C.2 D.34.正项等差数列的前和为,已知,则=()A.35 B.36 C.45 D.545.已知定义在R上的偶函数满足,当时,,函数(),则函数与函数的图象的所有交点的横坐标之和为()A.2 B.4 C.5 D.66.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式).A.2寸 B.3寸 C.4寸 D.5寸7.已知为等腰直角三角形,,,为所在平面内一点,且,则()A. B. C. D.8.在平面直角坐标系中,锐角顶点在坐标原点,始边为x轴正半轴,终边与单位圆交于点,则()A. B. C. D.9.已知的部分图象如图所示,则的表达式是()A. B.C. D.10.将函数的图象分别向右平移个单位长度与向左平移(>0)个单位长度,若所得到的两个图象重合,则的最小值为()A. B. C. D.11.已知,若,则等于()A.3 B.4 C.5 D.612.已知复数z满足(i为虚数单位),则z的虚部为()A. B. C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数,满足约束条件则的最大值为________.14.设为偶函数,且当时,;当时,.关于函数的零点,有下列三个命题:①当时,存在实数m,使函数恰有5个不同的零点;②若,函数的零点不超过4个,则;③对,,函数恰有4个不同的零点,且这4个零点可以组成等差数列.其中,正确命题的序号是_______.15.已知函数f(x)=若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是________.16.已知平面向量、的夹角为,且,则的最大值是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某芯片公司对今年新开发的一批5G手机芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为五个小组(所调查的芯片得分均在内),得到如图所示的频率分布直方图,其中.(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替).(2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公司将认定该芯片不合格.已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率).每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由.18.(12分)选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:.(1)求曲线的普通方程以及曲线的平面直角坐标方程;(2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标.19.(12分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立y关于x的回归方程;(3)若旋转的弧度数x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?附:对于一组数据,,,…,,其回归直线的斜率和截距的最小二乘估计分别为,.20.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.21.(12分)在中,角,,所对的边分别是,,,且.(1)求的值;(2)若,求的取值范围.22.(10分)已知椭圆的离心率为,且过点.(1)求椭圆C的标准方程;(2)点P是椭圆上异于短轴端点A,B的任意一点,过点P作轴于Q,线段PQ的中点为M.直线AM与直线交于点N,D为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据给定的程序框图,逐次计算,结合判断条件,即可求解.【详解】由题意,执行上述程序框图,可得第1次循环,满足判断条件,;第2次循环,满足判断条件,;第3次循环,满足判断条件,;第4次循环,满足判断条件,;不满足判断条件,输出.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题.2、A【解析】
将fx整理为3sinωx+π3,根据x的范围可求得ωx+π3∈π【详解】f当x∈0,π时,又f0=3sin由fx在0,π上的值域为32解得:ω∈本题正确选项:A【点睛】本题考查利用正弦型函数的值域求解参数范围的问题,关键是能够结合正弦型函数的图象求得角的范围的上下限,从而得到关于参数的不等式.3、C【解析】
由不等式恒成立问题分类讨论:①当,②当,③当,考查方程的解的个数,综合①②③得解.【详解】①当时,,满足题意,②当时,,,,,故不恒成立,③当时,设,,令,得,,得,下面考查方程的解的个数,设(a),则(a)由导数的应用可得:(a)在为减函数,在,为增函数,则(a),即有一解,又,均为增函数,所以存在1个使得成立,综合①②③得:满足条件的的个数是2个,故选:.【点睛】本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.4、C【解析】
由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.【详解】正项等差数列的前项和,,,解得或(舍),,故选C.【点睛】本题主要考查等差数列的性质与求和公式,属于中档题.解等差数列问题要注意应用等差数列的性质()与前项和的关系.5、B【解析】
由函数的性质可得:的图像关于直线对称且关于轴对称,函数()的图像也关于对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4得解.【详解】由偶函数满足,可得的图像关于直线对称且关于轴对称,函数()的图像也关于对称,函数的图像与函数()的图像的位置关系如图所示,可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4.故选:B【点睛】本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题.6、B【解析】试题分析:根据题意可得平地降雨量,故选B.考点:1.实际应用问题;2.圆台的体积.7、D【解析】
以AB,AC分别为x轴和y轴建立坐标系,结合向量的坐标运算,可求得点的坐标,进而求得,由平面向量的数量积可得答案.【详解】如图建系,则,,,由,易得,则.故选:D【点睛】本题考查平面向量基本定理的运用、数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.8、A【解析】
根据单位圆以及角度范围,可得,然后根据三角函数定义,可得,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果.【详解】由题可知:,又为锐角所以,根据三角函数的定义:所以由所以故选:A【点睛】本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.9、D【解析】
由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,,,则,,因此,.故选:D.【点睛】本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.10、B【解析】
首先根据函数的图象分别向左与向右平移m,n个单位长度后,所得的两个图像重合,那么,利用的最小正周期为,从而求得结果.【详解】的最小正周期为,那么(∈),于是,于是当时,最小值为,故选B.【点睛】该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.11、C【解析】
先求出,再由,利用向量数量积等于0,从而求得.【详解】由题可知,因为,所以有,得,故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.12、D【解析】
根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
作出约束条件表示的可行域,转化目标函数为,当目标函数经过点时,直线的截距最大,取得最大值,即得解.【详解】作出约束条件表示的可行域是以为顶点的三角形及其内部,转化目标函数为当目标函数经过点时,直线的截距最大此时取得最大值1.故答案为:1【点睛】本题考查了线性规划问题,考查了学生转化划归,数形结合,数学运算能力,属于基础题.14、①②③【解析】
根据偶函数的图象关于轴对称,利用已知中的条件作出偶函数的图象,利用图象对各个选项进行判断即可.【详解】解:当时又因为为偶函数可画出的图象,如下所示:可知当时有5个不同的零点;故①正确;若,函数的零点不超过4个,即,与的交点不超过4个,时恒成立又当时,在上恒成立在上恒成立由于偶函数的图象,如下所示:直线与图象的公共点不超过个,则,故②正确;对,偶函数的图象,如下所示:,使得直线与恰有4个不同的交点点,且相邻点之间的距离相等,故③正确.故答案为:①②③【点睛】本题考查函数方程思想,数形结合思想,属于难题.15、【解析】由图可知,当直线y=kx在直线OA与x轴(不含它们)之间时,y=kx与y=f(x)的图像有两个不同交点,即方程有两个不相同的实根.16、【解析】
建立平面直角坐标系,设,可得,进而可得出,,由此将转化为以为自变量的三角函数,利用三角恒等变换思想以及正弦函数的有界性可得出结果.【详解】根据题意建立平面直角坐标系如图所示,设,,以、为邻边作平行四边形,则,设,则,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,则,当时,取最大值.故答案为:.【点睛】本题考查了向量的数量积最值的计算,将问题转化为角的三角函数的最值问题是解答的关键,考查计算能力,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)预算经费不够测试完这100颗芯片,理由见解析【解析】
(1)先求出,再利用频率分布直方图的平均数公式求这100颗芯片评测分数的平均数;(2)先求出每颗芯片的测试费用的数学期望,再比较得解.【详解】(1)依题意,,故.又因为.所以,所求平均数为(万分)(2)由题意可知,手机公司抽取一颗芯片置于一个工程机中进行检测评分达到11万分的概率.设每颗芯片的测试费用为X元,则X的可能取值为600,900,1200,1500,,,故每颗芯片的测试费用的数学期望为(元),因为,所以显然预算经费不够测试完这100颗芯片.【点睛】本题主要考查频率分布直方图的平均数的计算,考查离散型随机变量的数学期望的计算,意在考查学生对这些知识的理解掌握水平.18、(1),;(2),,.【解析】
(1)把曲线的参数方程与曲线的极坐标方程分别转化为直角坐标方程;(2)利用图象求出三个点的极径与极角.【详解】解:(1)由消去参数得,即曲线的普通方程为,又由得即为,即曲线的平面直角坐标方程为(2)∵圆心到曲线:的距离,如图所示,所以直线与圆的切点以及直线与圆的两个交点,即为所求.∵,则,直线的倾斜角为,即点的极角为,所以点的极角为,点的极角为,所以三个点的极坐标为,,.【点睛】本题考查圆的参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法,极坐标方程化为直角坐标方程,只要将和换成和即可.19、(1)更适宜(2)(3)x为2时,烧开一壶水最省煤气【解析】
(1)根据散点图是否按直线型分布作答;(2)根据回归系数公式得出y关于的线性回归方程,再得出y关于x的回归方程;(3)利用基本不等式得出煤气用量的最小值及其成立的条件.【详解】(1)更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型.(2)由公式可得:,,所以所求回归方程为.(3)设,则煤气用量,当且仅当时取“”,即时,煤气用量最小.故x为2时,烧开一壶水最省煤气.【点睛】本题考查拟合模型的选择,回归方程的求解,涉及均值不等式的使用,属综合中档题.20、(1)(2)【解析】
(1)由已知利用三角函数恒等变换的应用,正弦定理可求,即可求的值.(2)利用三角函数恒等变换的应用,可得,根据题意,得到,解得,得到函数的解析式,进而求得的值,利用三角函数恒等变换的应用可求的值.【详解】(1)由题意,根据正弦定理,可得,又由,所以,可得,即,又因为,则,可得,∵,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大班第一学期班级管理工作计划
- 小学四年级科学上册的教学计划
- 小学数学复习参考计划
- 岭南师范学院《英语戏剧选读》2021-2022学年第一学期期末试卷
- 临沂大学《专业作品创作》2021-2022学年第一学期期末试卷
- 临沂大学《心理健康教育课程与教学》2021-2022学年第一学期期末试卷
- 聊城大学《软件项目管理》2022-2023学年第一学期期末试卷
- 聊城大学《面向对象程序设计(上机)》2021-2022学年第一学期期末试卷
- 三年级人自然社会教学计划例文
- 2024事业单位工作人员下半年工作计划大全
- 头痛的鉴别诊断
- 财务数字化转型路径
- 环境工程技术专业调研报告
- 妊娠合并卵巢扭转的护理查房
- 急性阑尾炎个案查房
- 卡方分布表完
- 团队意识培训课件
- 小学各年级健康睡眠与充足休息主题班会
- 火龙罐综合灸疗法
- 2020-2021年英语专业四级考试真题及答案
- 闸门槽施工方案
评论
0/150
提交评论