2025年高考数学二轮复习 专项精练3 聚焦热点情境弘扬数学文化(真题精练+模拟精练)原卷版_第1页
2025年高考数学二轮复习 专项精练3 聚焦热点情境弘扬数学文化(真题精练+模拟精练)原卷版_第2页
2025年高考数学二轮复习 专项精练3 聚焦热点情境弘扬数学文化(真题精练+模拟精练)原卷版_第3页
2025年高考数学二轮复习 专项精练3 聚焦热点情境弘扬数学文化(真题精练+模拟精练)原卷版_第4页
2025年高考数学二轮复习 专项精练3 聚焦热点情境弘扬数学文化(真题精练+模拟精练)原卷版_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025二轮复习专项精练3聚焦热点情境,弘扬数学文化【模拟精练】一、单选题1.(23-24高一上·山东青岛·期中)十七世纪,数学家费马提出猜想:“对任意正整数,关于的方程没有正整数解”,经历三百多年,1995年数学家安德鲁怀尔斯给出了证明,使它终成费马大定理,则费马大定理的否定为(

)A.对任意正整数,关于的方程都没有正整数解B.对任意正整数,关于的方程至少存在一组正整数解C.存在正整数,关于的方程至少存在一组正整数解D.存在正整数,关于的方程至少存在一组正整数解2.(2024·四川成都·模拟预测)华罗庚是享誉世界的数学大师,国际上以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华氏算子”“华—王方法”等,其斐然成绩早为世人所推崇.他曾说:“数缺形时少直观,形缺数时难入微”,告知我们把“数”与“形”,“式”与“图”结合起来是解决数学问题的有效途径.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数图象的特征.已知函数的图象如图所示,则的解析式可能是(

A. B. C. D.3.(2024·重庆·一模)英国著名数学家布鲁克·泰勒(TaylorBrook)以微积分学中将函数展开成无穷级数的定理著称于世泰勒提出了适用于所有函数的泰勒级数,泰勒级数用无限连加式来表示一个函数,如:,其中.根据该展开式可知,与的值最接近的是(

)A. B.C. D.4.(2024·宁夏·一模)窗花是贴在窗子或窗户上的剪纸,是中国古老的传统民间艺术之一,图是一个正八边形窗花隔断,图是从窗花图中抽象出的几何图形的示意图.如图,若正八边形的边长为,是正八边形八条边上的动点,则的最小值为(

)A. B.0 C. D.5.(2023·湖北武汉·二模)“中国剩余定理”又称“孙子定理”,1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”,“中国剩余定理”讲的是一个关于同余的问题.现有这样一个问题:将正整数中能被3除余1且被2除余1的数按由小到大的顺序排成一列,构成数列,则(

)A.55 B.49 C.43 D.376.(2024·陕西西安·一模)“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《胁子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?现有这样一个相关的问题:被除余且被除余的正整数按照从小到大的顺序排成一列,构成数列,记数列的前项和为,则的最小值为(

)A.60 B.61 C.75 D.767.(2024·黑龙江·二模)祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为的圆柱与半径为的半球放置在同一底平面上,然后在圆柱内挖去一个半径为,高为的圆锥后得到一个新的几何体,用任何一个平行于底面的平面去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面去截半径为的半球,且球心到平面的距离为,则平面与半球底面之间的几何体的体积是(

)A. B. C. D.8.(22-23高三上·江西抚州·期中)数学美的表现形式多种多样,我们称离心率(其中)的椭圆为黄金椭圆,现有一个黄金椭圆方程为,若以原点为圆心,短轴长为直径作为黄金椭圆上除顶点外任意一点,过作的两条切线,切点分别为,直线与轴分别交于两点,则(

)A. B. C. D.9.(2024·辽宁沈阳·二模)我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,记事件“取出的重卦中至少有1个阴爻”,事件“取出的重卦中至少有3个阳爻”.则(

)A. B. C. D.10.(2024·内蒙古赤峰·一模)棣莫弗公式(其中i为虚数单位)是由法国数学家棣莫弗(1667-1754)发现的,根据棣莫弗公式可知,复数在复平面内所对应的点位于(

)A.第一象限 B.第二象限 C.第三象限 D.第四象限二、多选题11.(2024·湖北·模拟预测)对于正整数n,是小于或等于n的正整数中与n互质的数的数目.函数以其首名研究者欧拉命名,称为欧拉函数,例如(与互质),则()A.若n为质数,则 B.数列单调递增C.数列的最大值为1 D.数列为等比数列12.(23-24高二上·江苏南京·阶段练习)由倍角公式可知,可以表示为的二次多项式.一般地,存在一个次多项式,使得,这些多项式称为切比雪夫(P.L.Tschebyscheff)多项式.运用探究切比雪夫多项式的方法可得(

)A. B.C. D.13.(2024·江西宜春·三模)古希腊数学家阿波罗尼斯的著作《圆锥曲线论》中给出了阿波罗尼斯圆的定义:在平面内,已知两定点A,B之间的距离为a(非零常数),动点M到A,B的距离之比为常数(,且),则点M的轨迹是圆,简称为阿氏圆.在平面直角坐标系中,已知,点M满足,则下列说法正确的是(

)A.面积的最大值为12 B.的最大值为72C.若,则的最小值为10 D.当点M不在x轴上时,MO始终平分14.(22-23高三上·山东潍坊·期中)斐波那契数列又称黄金分割数列,因意大利数学家列昂纳多-斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,在现代物理、准晶体结构、化学等领域都有直接的应用.在数学上,斐波那契数列被以下递推的方法定义:数列满足:,.则下列结论正确的是(

)A. B.是奇数C. D.被4除的余数为015.(22-23高三下·湖南长沙·阶段练习)设为两个正数,定义的算术平均数为,几何平均数为,则有:,这是我们熟知的基本不等式.上个世纪五十年代,美国数学家D.H.Lehmer提出了“Lehmer均值”,即,其中为有理数.下列关系正确的是(

)A. B.C. D.16.(2023·辽宁·三模)《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称为“阳马”,四个面均为直角三角形的四面体称为“鳖臑”,如图在堑堵中,AC⊥BC,且.下列说法正确的是(

)A.四棱锥为“阳马”B.四面体的顶点都在同一个球面上,且球的表面积为C.四棱锥体积最大值为D.四面体为“鳖臑”17.(21-22高三上·湖北鄂州·期末)中国结是一种手工编织工艺品,因为其外观对称精致,可以代表汉族悠久的历史,符合中国传统装饰的习俗和审美观念,故命名为中国结.中国结的意义在于它所显示的情致与智慧正是汉族古老文明中的一个侧面,也是数学奥秘的游戏呈现.它有着复杂曼妙的曲线,却可以还原成最单纯的二维线条.其中的八字结对应着数学曲线中的双纽线.曲线:是双纽线,则下列结论正确的是(

)A.曲线的图象关于原点对称B.曲线经过5个整点(横、纵坐标均为整数的点)C.曲线上任意一点到坐标原点的距离都不超过3D.若直线与曲线只有一个交点,则实数的取值范围为18.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论