




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2
Contents
Acknowledgement 3
Abstract 4
Preface 4
KT'sAITransformationutilizingAgentandData 4
NTTDOCOMO'sStrategicJourneytowardsDigitalTransformationandEnhanced
CustomerExperience 5
ChinaMobile'sTransitiontoAI+toAmplifyScaleEmpowerment 5
1LLMAdoptionStrategiesinIndustry 6
2EmergingChallengesandTechnicalForesights 7
2.1AIApplicationPerspective 7
2.2DataFuelingPerspective 9
3ApplicationToolingPlatforms 11
3.1ChinaMobileJiutianLargeLanguageModelApplicationPlatform 11
3.2DOCOMOLLMValue-AddedPlatform 12
3.3KTSLM/LLMPlatform 13
4GenerativeAIApplicationCases 14
4.1GenerativeAIforNetworkO&M 14
4.2GenerativeAIforCustomerService 17
5FutureOutlookandIndustrySuggestions 21
6Abbreviations 22
3
Acknowledgement
SCFAwasestablishedin2011byChinaMobile,Korea'sKT,andJapan'sNTTDOCOMO,aimingtopromoteatripartitecooperationframeworkforglobaltechnologystandardsandindustryecosystems.
In2022,theAIWorkgroupwasestablished,focusingonthedevelopmentandapplicationofAItechnology,promotingtechnicalexchangesamongmembercompanies,andguidingandfacilitatingtheapplicationandcooperationofAItechnologywithintheindustry.
ThisWhitePaperhasbeenproducedasacollectiveeffortwithintheSCFAAIWG,andonitsbehalfthefollowingeditingteam(listedinalphabeticalorder):
ChinaMobile:
LingliDeng,BoYuan,XuefengZhao,XiangyangYuan,DiJin
KT:
JiyoungKim,JaehoOh
NTTDOCOMO:
IsseiNakamura,KuanyinLiu,AoguYamada,SatomiKura,TakeshiKato
SCFAAIWG
ChinaMobileContact:
liukaixi@
KTContact:
zeeyoung.kim@
NTTDOCOMOContact:
issei.nakamura.zs@
4
Abstract
ThisdocumentanalyzesthechallengesofscaleadoptionofLargeLanguageModels(LLMs)intoindustrialapplications,highlightingtheproblemofreinventingthewheelofcommoncapabilities,theperformancebottleneckofnetworkcommunication,theimprovementofproductivitybyutilizingwork-orientedSLM/LLMbasedAIagents,andproposestechnologicaldevelopmenttrendssuchasinnovationinfundamentalalgorithms,standardizationofapplicationtoolplatforms,andCloud-Edgecollaboration.ItshowcasescontributingCSPs’strategiclayoutinAItechnology,dataintegration,applicationtoolingplatforms,aswellasavarietyofgenerativeAIapplications,andlooksforwardtothefuturedevelopmentofAItechnology,dataintegrationandindustrycollaborationrecommendations.
Preface
KT'sAITransformationutilizingAgentandData
WiththerapidadvancementofAIHWandSWtechnologies,generativeAImodelsareevolvingintovariousversions.Alongsidethis,generativeAIAgentsareswiftlypermeatingourdailylives.TheparadigmshiftstoapracticalAIAgentcompetition,reflectingusers'GenAIdemands,iscloselyrelatedtothehandlingandaccommodationofextensivecustomerdata.AsAIadvances,theimportanceofdataincorporateactivitieshasbecomeevengreater,andData-drivenAIAgentsbasedoncustomersandcompaniesareatthecenterof"CorporateTransformationUsingAI".TosucceedinAX,itisessentialtocollectandutilizedatafromcorporateactivitieseffectively,andtheprimaryinnovationofAIcompaniesmustbedrivenbyData-drivenAX.
Inthe"EraofAIAgents",whereAIisbecomingcentraltocorporateandpersonaldailyservices,KTispursuingtheenhancementofAIcompetitivenessusingAIAgentsasoneofitssuccessfultransformationdirectionsintoanAICTcompany.Underthemulti-modelline-upstrategy,whichcombinesitsself-developedAIlanguagemodelMi:dmwithmodelsbasedonopen-source,KTaimstoprovideavarietyofcustomer/industry-specificmodelsandAIAgentstothemarket,basedonhigh-qualitydatalearningandutilization.KTismovingforwardwiththegoalofenhancingproductivitybyutilizingworkAIAgentsforitsemployees,anditalsoplanstospreadnewAIexperiencestocustomersbyapplyingthemtoitsGenieTV.BydevelopingtheseAIAgentsandlaunchingservices,KTexpectstosecurecustomerAIdataandconceivespecificAIbusinessmodelsutilizingthedata.StrengtheningAIMSPcompetitivenessbyprovidingModelasaServicecomprehensivelyandthroughglobalAIAgenttechnology/businesscooperation,KTwillleadtheAImarketandecosystemconstruction.
5
NTTDOCOMO'sStrategicJourneytowardsDigitalTransformationandEnhancedCustomerExperience
NTTDOCOMO(DOCOMO)setthegoalofimprovingcustomerexperienceandreformingbusinessstructurewithdigitalizationofbusinessmanagement,andpromotionandexecutionofdatautilizationasourmedium-termstrategytoward2025.InitiativesindigitaltransformationatDOCOMOincludenetworkoptimizationthroughdatautilization,AIandhumanresourcetraining,andthepromotionofdigitalmarketing.AIplatformsforimagerecognition,voicerecognition,andcustomeranalysisarebeingofferedtoenhanceDOCOMO'scompetitivenessbyapplyingthesetechnologiestoitsservices.
Since2014,DOCOMOhasbeenbuildingabigdatainfrastructurethatcollectsdatasuchasuserinformation,usagehistory,networktrafficandpaymenthistoryfromalmost100millionusersandmorethan270,000basestationsasanefforttopromotedigitalizationofbusinessmanagementanddatautilization.TheplatformincorporatesexternaldatafrombusinesspartnersandAItechnologiestocreatevalueacrossvariousbusinessfields,suchasMobilityasaService,retail,banking,andthemetaverse.
LeveragingnewtechnologieslikegenerativeAItofindnewrevenuestreamsandgrowthebusinessisnotaneasytask.Itrequiresstrategicplanning,includingtrainingpersonnel,andalotoftrialanderror.DOCOMOisnotonlyfocusingondevelopingthefoundationaltechnologiesforgenerativeAIbutisalsoactivelyworkingonvariousinitiativestocreateusecasesandtrainpersonnelthroughcontinuousexperimentationandrefinement.
ChinaMobile'sTransitiontoAI+toAmplifyScaleEmpowerment
Inthefaceofthewaveofchange,ChinaMobile,asthelargestmobilecommunicationoperatorintheworld,hasalwaysanchoreditsstrategicpositioningof"world-classinformationservicetechnologyinnovationcompany".
Intermsofnetworkcomputinginfrastructure,acommunicationnetworkwiththewidestcoverageandthelargestuserscaleintheworldhasbeenbuilt,withmorethan1.9million5Gbasestationsaccountingfor30%oftheworld'stotal,over90landandseacablesystemsconnecting78countries,andthelargestsingleintelligentcomputingcenterofglobaloperatorswith18000GPUcards.
Jiutian,aseriesoflargefoundationmodelsoflanguage,vision,voice,structureddataandmulti-modalityhavebeenconstructed,ontopofwhichmorethan40largeindustrymodelsarelaunched,formingacomprehensiveAIportfolioincludingplatforms,capabilities,andlarge-scaleapplications.Over10,000"AI+"projectshavebeenlaunchedtopromotetheintelligentandgreendevelopmentofvariousindustries,suchasenergy,manufacturing,medicalcaring,transportationandothers.
Alongtheway,itisnoticedthatthetransitionto"AI+"signifiestheshiftofAItechnologyfromameretechnicalapplicationtoacomprehensiveempowermentdeeplyintegratedintoindustrialdevelopment.Thechallengesfacedinthisprocessincludethe
6
limitationsofLLMsincriticaltaskexecution,thewasteofresourcescausedbytherepetitivedevelopmentofcommoncapabilities,andthebottleneckeffectofnetworkcommunication.
Toaddressthesechallenges,ChinaMobilecallsonallpartiesintheindustrytoworktogetherinbuildingacomprehensive"AI+"industryecosystemtopromoteinnovationsatthefundamentalalgorithmlevel,standardizationofapplicationtoolingplatforms,andnewmodelsofCloud-Edgecollaboration
1LLMAdoptionStrategiesinIndustry
Artificialintelligence,representingthenewgenerationofinformationtechnology,israpidlyemergingasasignificantdrivingforcefornewqualityproductivity.Amongthese,generativeAItechnologybasedonLLMsissignificantlyempoweringvariousindustries,leadingtoanexplosivegrowthintheapplicationofAImodelsacrossindustries,heraldingthearrivalofatechnologicalandindustrialrevolution,wheretheinformationservicesystemandtheeconomicandsocialoperationsystemsaredeeplyintegrated,profoundlychangingpeople'slifestylesandmodesofproduction.
LLMshavedemonstratedextensiveandprofoundimpactsoncurrentindustrialapplications,emergingaspivotaltoolsinthedigitaltransformationofenterprises.Fromknowledgemanagementtohandlingcomplextasks,LLMsareprogressivelyintegratingintocorebusinessprocesses.Onenotableapplicationisretrieval-augmentedgeneration(RAG),whichcombinesexternalknowledgebaseswithgenerativecapabilitiestoeffectivelyaddresscomplexqueries.Thisapproachisparticularlyeffectiveincustomerservice,whereLLMsassistcompaniesinextractingpreciseanswersfrommassiveinternaldocuments,therebyenhancingserviceefficiency.Moreover,LLMsplayasignificantroleinbuildingandmanagingenterpriseknowledgebases,facilitatingintelligentqueryingandupdatingthroughnaturallanguageunderstandingandknowledgeextraction.Inhandlingcomplextasks,LLMsexhibitpowerfulcapabilitiessuchasautomatedreportwriting,marketingcopygeneration,andcodegeneration,significantlyboostingproductivityandautomatingbusinessprocesses.LLMshavealsofoundwidespreaduseinautomatedcustomerservicesystems,wheretheirdeepunderstandingofnaturallanguageallowsthemtohandlecomplexcustomerintentionsandcontextualinteractionsbeyondthereachoftraditionalchatbots.Additionally,LLMscontributetopersonalizedrecommendationsbygeneratingcustomizedcontent,offeringprecisesuggestionsthathelpbusinessesachievehighercustomersatisfaction.Torealizetheseapplications,LLMsleveragevarioustechniquestooptimizetheirperformanceinspecificscenarios.TheadoptionofLLMsinindustrycanproceedindifferentways,dependingonthetechnologicalrequirementsandapplicationcontext.Forapplicationswithlowertechnicalbarriers,enterprisescanquicklydeployL0andL1modelsbyintegratingdomain-specificknowledgebases,makingthisapproachsuitableforscenariosthatrequirerapidimplementationwithoutintensivemodeloptimization.Inscenariosrequiringdomain-specificcustomization,L0modelscanbefine-tunedbyuploadingcustomizeddatasetsandapplyinglow-codeconfigurationtoproduceL1modelsadaptedtospecifictasks.Thismethodsuitssituationswheredata
7
accumulationandmodeladaptabilityareneeded,allowingformorepreciseresponsestoparticularbusinessrequirements.Forapplicationswithhighertechnicaldemandsandmorecomplexcontexts,enterprisescanadoptacomprehensivemodeldevelopmentprocess,encompassingdatacollection,processing,pre-training,andfine-tuning,ensuringmodelperformanceandstabilityinintricateapplicationsandmeetingtheneedsofhigh-precision,high-reliabilityoperations.Furthermore,LLMdeploymentcanberealizedthroughmulti-modelconvergenceplatforms,enablingbroadercollaborativeapplications.Enterprisescanutilizemodularpluginsandcentralizedagentstobuildcomplexbusinesssystemsthatintegratemultiplemodels,therebyfacilitatingcross-industryapplicationexpansionandfulfillingtherequirementsofsophisticatedapplicationecosystems.
Inconclusion,theindustrialdeploymentofLLMsspansfrombasicknowledgebaseintegrationtofull-scalemodelcustomizationandmulti-modelmanagement,creatingamulti-layeredapplicationsystemthatrangesfromlowtechnicalbarrierstohighlycustomizedimplementations.Throughthesediverseapproaches,LLMsaredrivingthedevelopmentofintelligentindustries,providingflexibleandpersonalizedsolutionsacrosssectors,andempoweringenterpriseswithefficientoperationsandintelligentdecision-makingcapabilities.
2EmergingChallengesandTechnicalForesights
Withthein-depthdevelopmentofthefourthindustrialrevolutioncharacterizedbydigitalintelligence,thereisaforeseeabletrendofthemutualembracebetweentraditionalindustriesandAItechnologytoaddressemergingchallengesforLLMscaleadoption:ontheonehand,thedeepeningintegrationofindustryinformationresourcesanddatagovernanceempowerstheinnovationofLLMapplicationsbyprovidingdesiredrawdatamaterials;ontheotherhand,continuousinnovationinLLMalgorithmsandengineeringtoolsaddressestheapplicabilityandeconomicissuesoflarge-scaleproductionenvironmentapplications.
2.1AIApplicationPerspective
Challenge:Largelanguagemodelscurrentlydonotpossessthecapabilitytobedirectly
appliedinkeydecision-makingprocessesinproductionenvironments.
Foresight:Innovationinbasictheoriesforreasoningacceleration,full-processautonomouscontrolatthefundamentalalgorithmlevel,torealizeautonomouscognition,autonomousevolution,andautonomousbreakthroughofAIagents.
Currently,LLMsserveaspowerfulinformationprocessingtoolscapableofexecutingtaskssuchasnaturallanguageprocessing,imagerecognition,languagetranslation,textgeneration,andimagerecognition.However,largelanguagemodelsthemselveslackenvironmentalperceptioncapabilitiesanddonotpossessautonomyandproactivedecision-makingabilities,usuallyrequiringhumaninputortriggeringtoprocess
8
informationinapresetmanner.Therefore,theyfacedifficultiesinexecutingdynamicandcomplextasks,asthesetaskstypicallyrequireperceptionandunderstandingoftherealworld,theabilitytoadapttoenvironmentalchanges,andmakingdecisionsthatalignwiththegoals.Hencefutureinnovationatthebasicalgorithmlevelwillfocusonthefollowingareas:
lAutonomouscognitionFuturealgorithmswillplacegreateremphasisontheautonomouscognitivecapabilitiesofintelligentagents,enablingthemtobetterunderstandandpredicttheirenvironment,withenhancedperception,reasoning,anddecision-makingcapabilitiesoftheenvironment,aswellasadaptabilityincomplexenvironments.
lAutonomousevolutionAlgorithmswillbedesignedtoevolveontheirown,continuouslyoptimizingtheirperformancethroughmachinelearning.Intelligentagentswillbeabletolearnfromexperience,automaticallyadjusttheirbehaviortoadapttonewtasksandenvironments,therebyimprovingtheirgeneralizationcapabilities.
lAutonomousbreakthroughToachieveahigherlevelofintelligence,algorithmsneedtobeabletoachievebreakthroughsontheirownwithouthumanintervention.Thisinvolvesinnovativealgorithmdesign,enablingAIagentstodiscovernewsolutionsandevensurpasstheperformanceofhumanexpertsinsomecases.
Moreover,tosupportthedevelopmentoftheabovecapabilities,algorithmsandAIagentoperationoptimizationandcontroltechnologyalsoneediterativeinnovation,includingreasoningaccelerationtechnologytoimprovetheresponsivenessandefficiencyofAIagentsforcomplextasks,andfull-processautonomouscontrollablealgorithmstoensuretheirstabilityandreliability.
Challenge:Theverticalrepetitivedevelopmentofalargenumberofcommon
capabilitiesleadstoresourcewasteandslowsupdatesandupgrades.
Foresight:TheriseofapplicationtoolingplatformsservingasLLMsplusdomainspecificknowledgebases,withplugins,tools,enhancingprofessionalcapabilitieswhilenotlosingbasiccapabilitiesforAIagentcustomizationdevelopment.
Inthecurrentfieldofartificialintelligence,wefaceasignificantchallenge,thatis,theverticalrepetitivedevelopmentofalargenumberofcommoncapabilities,whichnotonlyleadstoresourcewastebutalsomakestheprocessofupdatesandupgradesslow.ThisphenomenonisparticularlyprominentintherapidlydevelopingAItechnologybecauseitinvolvesalargeamountofresearchandapplicationdevelopment.
Toaddressthischallenge,itisforeseenthatanimportantdirectionforfuturetechnologicaldevelopmentistheinnovationofapplicationtoolplatforms.Inparticular,AIagentcustomizationanddevelopmentplatformswillbekey,whichcanprovidelow-codesolutionstoenablenon-technicaluserstocreateofficeagents,financialagents,andotherprofessionaltoolseasily.SuchplatformsprovidebasicLLMscombinedwithprofessionalknowledgebases,aswellaspluginsandtools,whichcanenhanceprofessionalcapabilitieswhilekeepingbasiccapabilities.
Throughsuchplatforms,onemaynotonlyreduceresourcewastebutalsoacceleratetheadvancementofAItechnology,therebypromotingthehealthydevelopmentofthe
9
entireindustry.
Challenge:The"bottleneckeffect"ofnetworkinconnectingdataandcloudcomputing
infrastructureishighlightedasthe"lastmile"ofLLMdeploymentanduserempowerment.
Foresight:Cloud-Edgecollaborationisleveragedtoenablepremise(networkedge,hometerminal)personalizedAIagentservices.
Intoday'sdigitalera,thebottleneckeffectofnetworkcommunicationhasbecometherestricting"lastmile"forLLMstoreachandempowerusers.Tosolvethisproblem,itisforeseeablethatthenewmodelofCloud-Edgecollaborationwillbecomemainstream,especiallyontheend-sideofthenetworkedgeandhometerminal,byprovidingpersonalizedintelligentagentservicesasasolution.
Thenetworkedgeandhometerminalontheend-sidearekeylinksintheCloud-Edgecollaboration,andAIagentservicescanbedeployedattheseendpointstoreducethedependenceoncentralizedcloudcomputingresources.Inthisway,datapre-processing,analysis,andresponsecanbeexecutedclosertotheuser,reducingdatatransmissionlatencyandbandwidthrequirements.e.g.,bydeployingintelligentgatewaysathometerminals,functionslikehomeautomationcontrolandsecuritymonitoringcanberealizedwithimprovedresponsivenessandreducednetworkload.
Inaddition,basedontheAIagentcustomizationanddevelopmentplatform,personalizedAIagentservicescanbecustomizedaccordingtothespecificneedsandusagehabitsofusers,providingmoreaccurateandefficientservices.Thisnotonlyincludesapplicationsinprofessionalfieldssuchasofficeagentsandfinancialagentsbutcanalsobeextendedtovariousaspectsoflifesuchaspersonalhealthmanagement,education,andentertainment.BycallingontheLLMsandprofessionalknowledgebasesdistributedintheend-to-endnetworkondemand,integratingpluginsandtools,etc.,personalizedAIagentscanenhancetheirprofessionalcapabilitieswhilenotlosingresponsivenessorcustomerexperience.
Insummary,throughthedevelopmentofCloud-EdgecollaborationandpersonalizedAIagentservices,thebottleneckproblemofnetworkcommunicationcanbeeffectivelysolved,promotingthewidespreadapplicationofLLMsinvariousfieldsandachievingatrueintelligenttransformation.
2.2DataFuelingPerspective
Challenge:Thelackofstandardizationofscattereddatahindersthestartingpointfor
data-drivenAX.
Foresight:DataGovernancefordataclassification,datastandardizationandsystematization,andgrademanagementofdata.
DatagovernanceisaseriesofprocessesrelatedtodatastandardizationforAI,toensureconsistencyindatanames,datadescriptions,anddataformats.
Thefollowingthreestagesarenecessarytoimplementdatagovernancesuccessfully.Meaningfulclassificationofcompany-widedataItiscrucialtosystematically
10
classifyvarioustypesofcompany-widedata,suchasenterprisedata,customerdata,managementdata,andinfrastructuredata,accordingtotheirtypesandpurposes.Systematicclassificationofdataisthestartingpointforefficientmanagement,utilization,andexecutionofAXinthenearfuture.
StandardizationandsystematizationofclassifieddataItisnecessarytomanageandunifystandardssothatcustomerscanunderstandfromthesameperspectiveatanycontactpointwiththepossibilityofconnectionsbetweencompany-widedata.Additionally,toimprovethereadabilityofbusinessdatabyapplyingdatastandardizationandsecureAIutilizationisneeded.
Managingdatagradesandconstructinggrade-basedcloudsconnectedwiththeappropriatesecuritysystemsItisessentialtoestablishagradingsystembycreatingmanagementindicators(quality,utilization,andcost)fordataandaccordinglyconfiguringgrade-basedclouds.Fromthesecurityenhancementperspective,itshouldbeavailabletochooseaccesscontrol,monitoring,andlogmanagementaccordingtothedatagrade.
Challenge:Dataintegrationisrequiredtomanagedatathatmakesunfragmentedinoneplace.
Foresight:Cloud-basedintegratedplatformfordatacentralization,analysis,andmodeling.
Itisrequiredtobuildacloud-basedMLdataplatformthatcancentralizecompany-widedatatoresolveexistingdataissues.
Buildinganintegrateddataplatformhelpscentralizethedataandgraduallyresolvetheissuescausedbydatasilos.
Tocontinuouslymanagethedataintegrationeffectively,itisnecessarytoconsistentlyalignamodernizationofAI,Data,andITinfrastructuresothattheprocessofdataaccumulationbythealignmentbetweenAIandDataandavailabilityofassetsbythealignmentbetweenDataandITcontinuestocirculate.
Throughthedirectionofdatacollectionandavailabilityofassets,itisexpectedtoachievetheeffectssuchasimprovingdecision-making,andpredictingissuesbyutilizingcustomerdata,managementdata,andinfrastructuredata.
Challenge:DataServingshouldbepreparedtointegrateanddistributethedataappropriately.
Foresight:Company-widecollaboration,secureandaccumulationofcapabilities,datamonetization.
Eveniftheprocessofintegrateddatagovernanceandmanagementiscarriedoutproperly,itcannotbesaidthatdata-drivenAXhasbeenfullyrealized.
Toeffectivelyintegratetheaccumulateddataanddistributeitasneeded,adedicatedorganizationthatleadsdataplanningandexecutionmustbeestablishedaswellasacollaborativesystembasedondomain-specificMLOps.
Anexpertiseindatagovernanceanddomain-specificdatacanbesecuredthroughsuchacollaborativesystem.
Additionally,itisnecessarytoexpanddatautilizationbusinessesbasedontheacquired
11
dataoperationandmanagementcapabilitiesandtoconvertthisexperienceintoexternalbusinesscapabilities.
3ApplicationToolingPlatforms
Inresponsetonumerouschallengesthatgreatlylimittheefficiencyofusersinbuildingintelligentagentsduringthedevelopmentprocess,suchashightechnicalbarriers,longdevelopmentcycles,difficultiesinimprovingmodelperformance,complexdeploymentandmaintenance,insufficientcustomizationandflexibility,difficultiesinteamcollaboration,andensuringsecuritycompliance,bothChinaMobile'sJiutianLargeLanguageModelApplicationPlatformandDOCOMO'sLLMValue-AddedPlatformenableone-stopintelligentagentapplicationdevelopment.
3.1ChinaMobileJiutianLargeLanguageModelApplicationPlatform
ChinaMobile'sJiutianLargeLanguageModelApplicationPlatformhascapabilitiessuchasapplicationconstruction,pluginintegration,modelplayground,andinferenceservices,offeringafull-process,one-stopproductiontoolforLLMapplications.Itprovidesacombinationofautonomousplanningandschedulingwithcontrollablemanualschedulingtoimproveschedulingaccuracyandreducemodelhallucinations,achievesenhancedmanagementofprivatedomainknowledgebasestoimprovetheaccuracyandprofessionalismofanswers,integratesarichsetofofficialpluginstofacilitatetheconstructionofabroaderrangeofapplicationcapabilities,integratesvariousmemorycapabilitiestopersonalizemodelresponsesandintegrateswiththird-partyapplicationstoprovideaccesstoAPIsandotherinferenceservices,whichhelpsindividualandenterprisecustomerstodeveloptheirownAIapplicationsatalowcostandinatimelyfashion,promotingtheapplicationandimplementationofLLMsinvariousindustries.
Figure1IllustrativeWorkflowofJiutianLargeLanguageModelApplicationPlatform
12
AsshowninFigure1,theJiutianLargeLanguageModelApplicationPlatformprovidesone-stopintelligentagentservicesforindividualandenterprisecustomers,insupportingmorethan100,000userstoquicklybuildmorethan1,500customizedintelligentagentapplications,coveringmultiplescenariossuchasoffice,social,entertainment,anddailylife,helpingAItoempowervariousindustries.
Lookingtothefuture,consumers'needsarebecomingincreasinglycomplex,andhigherrequirementswillbeproposedforthequality,stability,andrefinementofservices.Toempoweruserstobuilddiverseandcomplexapplications,theplatformwillfocusonstandardizingprocesses,supportingmultimodaldata,low-codeworkflows,andoptimizingthecorecapabilitiesofintelligentagents.Bycomprehensivelyupgradingintelligentagentservices,itensuresexcellentquality,stability,andreliability,enrichesthepluginecosystem,andprovidesanefficient,intelligent,andcomprehensiveconstructionexperience,inordertohelpitscustomersseizetheinitiativeindigitaltransformation,acceleratethepaceofinnovation,andachievealeapinbusinessvalue.
3.2DOCOMOLLMValue-AddedPlatform
SinceAugust2023,DOCOMOhavebeendevelopingtheLLMValue-AddedPlatformtopromotedigitaltransformationwithinourinternaloperationsandprovidenewservicesusingLLMs.ThisplatformisutilizedwithintheDOCOMOGroup,boastingapproximately7,000monthlyactiveusersandaround1,000,000callspermonth.
Themajorfeaturesavailableontheplatforminclude:
lLLMTherearevariousLLMsavailableasopen-sourcesoftware(OSS)orsoftwareasaservice(SaaS).TheseLLMsdifferintermsofcost,inp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省淮南市潘集区2024-2025学年九年级上学期期末化学试题(含答案)
- 清朝领导考试试题及答案
- 市场经济学试题及答案
- 管理沙盘面试题及答案
- 2019-2025年军队文职人员招聘之军队文职管理学与服务提升训练试卷A卷附答案
- 2019-2025年军队文职人员招聘之军队文职管理学题库附答案(典型题)
- 烟草公司2025招聘考试全真模拟笔试试题(综合能力测试卷)和答案解析
- 鼻饲操作及胃管误入气道案例分析培训课件
- 房产税务知识培训课件
- 钻石专业知识培训课件
- 抵押个人汽车借款合同范本
- 2025年中考第一次模拟考试地理(青海卷)(全解全析)
- 2025年内蒙古电子信息职业技术学院单招职业技能测试题库及参考答案
- 统编版(2024)七年级下册语文期末复习:第一单元素养提升测试卷(含答案)
- 电网工程设备材料信息参考价(2024年第四季度)
- 韩国出入境卡中韩文对照模板
- 五辊研磨机(课堂PPT)
- 二次函数求最值(动轴定区间、动区间定轴)(课堂PPT)
- 髋关节脱位2教学课件
- 耳式支座计算
- IMS基本信令流程课件
评论
0/150
提交评论