版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省安庆市五校联盟2025届高考数学全真模拟密押卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数,其中,,是虚数单位,则()A. B. C. D.2.运行如图所示的程序框图,若输出的值为300,则判断框中可以填()A. B. C. D.3.已知过点且与曲线相切的直线的条数有().A.0 B.1 C.2 D.34.某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为()A. B. C. D.5.甲乙两人有三个不同的学习小组,,可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A.B.C.D.6.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A.240,18 B.200,20C.240,20 D.200,187.“且”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要条件8.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在,内的学生人数为()A.800 B.1000 C.1200 D.16009.已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()A. B. C. D.10.设函数在上可导,其导函数为,若函数在处取得极大值,则函数的图象可能是()A. B.C. D.11.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度12.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为()(注:)A.1624 B.1024 C.1198 D.1560二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,其中为虚数单位,则的模为_______________.14.执行右边的程序框图,输出的的值为.15.的展开式中的常数项为______.16.若,,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在正四棱锥中,,点、分别在线段、上,.(1)若,求证:⊥;(2)若二面角的大小为,求线段的长.18.(12分)联合国粮农组织对某地区最近10年的粮食需求量部分统计数据如下表:年份20102012201420162018需求量(万吨)236246257276286(1)由所给数据可知,年需求量与年份之间具有线性相关关系,我们以“年份—2014”为横坐标,“需求量”为纵坐标,请完成如下数据处理表格:年份—20140需求量—2570(2)根据回归直线方程分析,2020年联合国粮农组织计划向该地区投放粮食300万吨,问是否能够满足该地区的粮食需求?参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,.19.(12分)已知A是抛物线E:y2=2px(p>0)上的一点,以点A和点B(2,0)为直径两端点的圆C交直线x=1于M,N两点.(1)若|MN|=2,求抛物线E的方程;(2)若0<p<1,抛物线E与圆(x﹣5)2+y2=9在x轴上方的交点为P,Q,点G为PQ的中点,O为坐标原点,求直线OG斜率的取值范围.20.(12分)在中,内角的边长分别为,且.(1)若,,求的值;(2)若,且的面积,求和的值.21.(12分)已知数列和,前项和为,且,是各项均为正数的等比数列,且,.(1)求数列和的通项公式;(2)求数列的前项和.22.(10分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】试题分析:由,得,则,故选D.考点:1、复数的运算;2、复数的模.2、B【解析】
由,则输出为300,即可得出判断框的答案【详解】由,则输出的值为300,,故判断框中应填?故选:.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.3、C【解析】
设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程.【详解】若直线与曲线切于点,则,又∵,∴,∴,解得,,∴过点与曲线相切的直线方程为或,故选C.【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.4、C【解析】
作出三棱锥的实物图,然后补成直四棱锥,且底面为矩形,可得知三棱锥的外接球和直四棱锥的外接球为同一个球,然后计算出矩形的外接圆直径,利用公式可计算出外接球的直径,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积.【详解】三棱锥的实物图如下图所示:将其补成直四棱锥,底面,可知四边形为矩形,且,.矩形的外接圆直径,且.所以,三棱锥外接球的直径为,因此,该三棱锥的外接球的表面积为.故选:C.【点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.5、A【解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.6、A【解析】
利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数.【详解】样本容量为:(150+250+400)×30%=240,∴抽取的户主对四居室满意的人数为:故选A.【点睛】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用.7、A【解析】
画出“,,,所表示的平面区域,即可进行判断.【详解】如图,“且”表示的区域是如图所示的正方形,记为集合P,“”表示的区域是单位圆及其内部,记为集合Q,显然是的真子集,所以答案是充分非必要条件,故选:.【点睛】本题考查了不等式表示的平面区域问题,考查命题的充分条件和必要条件的判断,难度较易.8、B【解析】
由图可列方程算得a,然后求出成绩在内的频率,最后根据频数=总数×频率可以求得成绩在内的学生人数.【详解】由频率和为1,得,解得,所以成绩在内的频率,所以成绩在内的学生人数.故选:B【点睛】本题主要考查频率直方图的应用,属基础题.9、A【解析】
利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程.【详解】双曲线:的焦点到渐近线的距离为,可得:,可得,,则的渐近线方程为.故选A.【点睛】本题考查双曲线的简单性质的应用,构建出的关系是解题的关键,考查计算能力,属于中档题.10、B【解析】
由题意首先确定导函数的符号,然后结合题意确定函数在区间和处函数的特征即可确定函数图像.【详解】函数在上可导,其导函数为,且函数在处取得极大值,当时,;当时,;当时,.时,,时,,当或时,;当时,.故选:【点睛】根据函数取得极大值,判断导函数在极值点附近左侧为正,右侧为负,由正负情况讨论图像可能成立的选项,是判断图像问题常见方法,有一定难度.11、D【解析】
通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.12、B【解析】
根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.【详解】依题意:1,4,8,14,23,36,54,……两两作差得:3,4,6,9,13,18,……两两作差得:1,2,3,4,5,……设该数列为,令,设的前项和为,又令,设的前项和为.易,,进而得,所以,则,所以,所以.故选:B【点睛】本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用复数模的计算公式求解即可.【详解】解:由,得,所以.故答案为:.【点睛】本题考查复数模的求法,属于基础题.14、【解析】初始条件成立方;运行第一次:成立;运行第二次:不成立;输出的值:结束所以答案应填:考点:1、程序框图;2、定积分.15、160【解析】
先求的展开式中通项,令的指数为3即可求解结论.【详解】解:因为的展开式的通项公式为:;令,可得;的展开式中的常数项为:.故答案为:160.【点睛】本题考查二项式系数的性质,关键是熟记二项展开式的通项,属于基础题.16、【解析】
因为,所以,又,所以,则,所以.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】试题分析:由于图形是正四棱锥,因此设AC、BD交点为O,则以OA为x轴正方向,以OB为y轴正方向,OP为z轴正方向建立空间直角坐标系,可用空间向量法解决问题.(1)只要证明=0即可证明垂直;(2)设=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量为,利用法向量夹角与二面角相等或互补可求得.试题解析:(1)连结AC、BD交于点O,以OA为x轴正方向,以OB为y轴正方向,OP为z轴正方向建立空间直角坐标系.因为PA=AB=,则A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因为=0,所以MN⊥AD(2)解:因为M在PA上,可设=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).设平面MBD的法向量=(x,y,z),由,得其中一组解为x=λ-1,y=0,z=λ,所以可取=(λ-1,0,λ).因为平面ABD的法向量为=(0,0,1),所以cos=,即=,解得λ=,从而M,N,所以MN==.考点:用空间向量法证垂直、求二面角.18、(1)见解析;(2)能够满足.【解析】
(1)根据表中数据,结合以“年份—2014”为横坐标,“需求量”为纵坐标的要求即可完成表格;(2)根据表中及所给公式可求得线性回归方程,由线性回归方程预测2020年的粮食需求量,即可作出判断.【详解】(1)由所给数据和已知条件,对数据处理表格如下:年份—2014024需求量—25701929(2)由题意可知,变量与之间具有线性相关关系,由(1)中表格可得,,,,.由上述计算结果可知,所求回归直线方程为,利用回归直线方程,可预测2020年的粮食需求量为:(万吨),因为,故能够满足该地区的粮食需求.【点睛】本题考查了线性回归直线的求法及预测应用,属于基础题.19、(1).(2)【解析】
(1)设A的坐标为A(x0,y0),由题意可得圆心C的坐标,求出C到直线x=1的距离.由半个弦长,圆心到直线的距离及半径构成直角三角形可得p的值,进而求出抛物线的方程;(2)将抛物线的方程与圆的方程联立可得韦达定理,进而求出中点G的坐标,再求出直线OG的斜率的表达式,换元可得斜率的取值范围.【详解】(1)设A(x0,y0)且y02=2px0,则圆心C(),圆C的直径|AB|,圆心C到直线x=1的距离d=|1|=||,因为|MN|=2,所以()2+d2=()2,即1,y02=2px0,整理可得(2p﹣4)x0=0,所以p=2,所以抛物线的方程为:y2=4x;(2)联立抛物线与圆的方程整理可得x2﹣2(5﹣p)x+16=0,△>0,设P(x1,y1),Q(x2,y2),则x1+x2=2(5﹣p),x1x2=16,所以中点G的横坐标xG=5﹣p,yG(),所以kOG(0<P<1),令t=5﹣p(t∈(4,5)),则kOG(),解得0<kOG,所以直线OG斜率的取值范围(0,).【点睛】本题考查抛物线的性质及直线与抛物线的综合,换元方法的应用,属于中档题.20、(1);(2).【解析】
(1)先由余弦定理求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑模板工程分包施工合同
- 简易活动房安装合同书范本
- 专业采购合同书样
- 互联网融资居间合同
- 低碳晶板采购合同
- 抵押借款合同纠纷的诉讼途径
- 公司借款合同协议书示例
- 高新技术产业创新平台搭建计划
- 企业内部通讯系统使用及维护合同
- 2024广东省建筑安全员-B证考试题库及答案
- 电力行业电力调度培训
- 生态安全与国家安全
- 全力以赴备战期末-2024-2025学年上学期备战期末考试主题班会课件
- 2024年保密协议书(政府机关)3篇
- 《视频拍摄与制作:短视频 商品视频 直播视频(第2版)》-课程标准
- 研发部年终总结和规划
- 石油开采技术服务支持合同
- 山东省烟台市2024届高三上学期期末考试英语试题 含解析
- 公司战略与风险管理战略实施
- 2024年-2025年《农作物生产技术》综合知识考试题库及答案
- 广东省广州市白云区2022-2023学年八年级上学期物理期末试卷(含答案)
评论
0/150
提交评论