2025届新疆第二师华山中学高三下第一次测试数学试题含解析_第1页
2025届新疆第二师华山中学高三下第一次测试数学试题含解析_第2页
2025届新疆第二师华山中学高三下第一次测试数学试题含解析_第3页
2025届新疆第二师华山中学高三下第一次测试数学试题含解析_第4页
2025届新疆第二师华山中学高三下第一次测试数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新疆第二师华山中学高三下第一次测试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知的值域为,当正数a,b满足时,则的最小值为()A. B.5 C. D.92.已知的垂心为,且是的中点,则()A.14 B.12 C.10 D.83.已知角的终边经过点P(),则sin()=A. B. C. D.4.已知整数满足,记点的坐标为,则点满足的概率为()A. B. C. D.5.已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为()A. B. C. D.6.已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为()A. B. C. D.7.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是()A.甲 B.乙 C.丙 D.丁8.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.9.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为()A. B. C. D.10.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为()A. B. C. D.11.如图是计算值的一个程序框图,其中判断框内应填入的条件是()A.B.C.D.12.在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.《九章算术》第七章“盈不足”中第一题:“今有共买物,人出八,盈三钱;人出七,不足四,问人数物价各几何?”借用我们现在的说法可以表述为:有几个人合买一件物品,每人出8元,则付完钱后还多3元;若每人出7元,则还差4元才够付款.问他们的人数和物品价格?答:一共有_____人;所合买的物品价格为_______元.14.已知函数,对于任意都有,则的值为______________.15.如图,在矩形中,,是的中点,将,分别沿折起,使得平面平面,平面平面,则所得几何体的外接球的体积为__________.16.已知全集,集合,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,侧棱底面,,,,是棱的中点.(1)求证:平面;(2)若,点是线段上一点,且,求直线与平面所成角的正弦值.18.(12分)已知在平面直角坐标系中,椭圆的焦点为为椭圆上任意一点,且.(1)求椭圆的标准方程;(2)若直线交椭圆于两点,且满足(分别为直线的斜率),求的面积为时直线的方程.19.(12分)已知数列满足,,其前n项和为.(1)通过计算,,,猜想并证明数列的通项公式;(2)设数列满足,,,若数列是单调递减数列,求常数t的取值范围.20.(12分)在中,内角,,所对的边分别是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.21.(12分)已知函数.其中是自然对数的底数.(1)求函数在点处的切线方程;(2)若不等式对任意的恒成立,求实数的取值范围.22.(10分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的极小值;(3)求函数的零点个数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

利用的值域为,求出m,再变形,利用1的代换,即可求出的最小值.【详解】解:∵的值域为,∴,∴,∴,当且仅当时取等号,∴的最小值为.故选:A.【点睛】本题主要考查了对数复合函数的值域运用,同时也考查了基本不等式中“1的运用”,属于中档题.2、A【解析】

由垂心的性质,得到,可转化,又即得解.【详解】因为为的垂心,所以,所以,而,所以,因为是的中点,所以.故选:A【点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.3、A【解析】

由题意可得三角函数的定义可知:,,则:本题选择A选项.4、D【解析】

列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整数点有7个,则所求概率为.故选:.【点睛】本题考查了古典概率的计算,意在考查学生的应用能力.5、D【解析】

设,,作为一个基底,表示向量,,,然后再用数量积公式求解.【详解】设,,所以,,,所以.故选:D【点睛】本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.6、B【解析】

由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.【详解】抛物线的焦点为,则,即,设点的坐标为,点的坐标为,如图:∴,解得,或(舍去),∴∴直线的方程为,设直线与抛物线的另一个交点为,由,解得或,∴,∴,故直线被截得的弦长为.故选:B.【点睛】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.7、C【解析】

分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【详解】①假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;②假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;③假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;④假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.8、D【解析】

结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.9、B【解析】

设,,,根据向量线性运算法则可表示出和;分别求解出和,,根据向量夹角的求解方法求得,即可得所求角的余弦值.【详解】设棱长为1,,,由题意得:,,,又即异面直线与所成角的余弦值为:本题正确选项:【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.10、B【解析】

由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.【详解】如图,因为四边形为菱形,,所以为等边三角形,,两渐近线的斜率分别为和.故选:B【点睛】此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.11、B【解析】

根据计算结果,可知该循环结构循环了5次;输出S前循环体的n的值为12,k的值为6,进而可得判断框内的不等式.【详解】因为该程序图是计算值的一个程序框圈所以共循环了5次所以输出S前循环体的n的值为12,k的值为6,即判断框内的不等式应为或所以选C【点睛】本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题.12、A【解析】

由已知可得到直线的倾斜角为,有,再利用即可解决.【详解】由F到直线的距离为,得直线的倾斜角为,所以,即,解得.故选:A.【点睛】本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于的方程或不等式,本题是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、753【解析】

根据物品价格不变,可设共有x人,列出方程求解即可【详解】设共有人,由题意知,解得,可知商品价格为53元.即共有7人,商品价格为53元.【点睛】本题主要考查了数学文化及一元一次方程的应用,属于中档题.14、【解析】

由条件得到函数的对称性,从而得到结果【详解】∵f=f,∴x=是函数f(x)=2sin(ωx+φ)的一条对称轴.∴f=±2.【点睛】本题考查了正弦型三角函数的对称性,注意对称轴必过最高点或最低点,属于基础题.15、【解析】

根据题意,画出空间几何体,设的中点分别为,并连接,利用面面垂直的性质及所给线段关系,可知几何体的外接球的球心为,即可求得其外接球的体积.【详解】由题可得,,均为等腰直角三角形,如图所示,设的中点分别为,连接,则,.因为平面平面,平面平面,所以平面,平面,易得,则几何体的外接球的球心为,半径,所以几何体的外接球的体积为.故答案为:.【点睛】本题考查了空间几何体的综合应用,折叠后空间几何体的线面位置关系应用,空间几何体外接球的性质及体积求法,属于中档题.16、【解析】

根据题意可得出,然后进行补集的运算即可.【详解】根据题意知,,,,.故答案为:.【点睛】本题考查列举法的定义、全集的定义、补集的运算,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】

(1)的中点,连接,,证明四边形是平行四边形可得,故而平面;(2)以为原点建立空间坐标系,求出平面的法向量,计算与的夹角的余弦值得出答案.【详解】(1)证明:取的中点,连接,,,分别是,的中点,,,又,,,,四边形是平行四边形,,又平面,平面,平面.(2)解:,,又,故,以为原点,以,,为坐标轴建立空间直角坐标系,则,0,,,0,,,2,,,0,,,2,,是的中点,是的三等分点,,1,,,,,,,,,0,,,2,,设平面的法向量为,,,则,即,令可得,,,,,直线与平面所成角的正弦值为.【点睛】本题考查了线面平行的判定,空间向量与直线与平面所成角的计算,属于中档题.18、(1)(2)或【解析】

(1)根据椭圆定义求得,得椭圆方程;(2)设,由得,应用韦达定理得,代入已知条件可得,再由椭圆中弦长公式求得弦长,原点到直线的距离,得三角形面积,从而可求得,得直线方程.【详解】解:(1)据题意设椭圆的方程为则椭圆的标准方程为.(2)据得设,则又原点到直线的距离解得或所求直线的方程为或【点睛】本题考查求椭圆标准方程,考查直线与椭圆相交问题.解题时采取设而不求思想,即设交点坐标为,直线方程与椭圆方程联立消元后应用韦达定理得,把这个结论代入题中条件求得参数,用它求弦长等等,从而解决问题.19、(1),证明见解析;(2)【解析】

(1)首先利用赋值法求出的值,进一步利用定义求出数列的通项公式;(2)首先利用叠乘法求出数列的通项公式,进一步利用数列的单调性和基本不等式的应用求出参数的范围.【详解】(1)数列满足,,其前项和为.所以,,则,,,所以猜想得:.证明:由于,所以,则:(常数),所以数列是首项为1,公差为的等差数列.所以,整理得.(2)数列满足,,所以,则,所以.则,所以,所以,整理得,由于,所以,即.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠乘法的应用,函数的单调性在数列中的应用,基本不等式的应用,主要考察学生的运算能力和转换能力,属于中档题型.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根据正弦定理先求得边c,然后由余弦定理可求得边b;(Ⅱ)结合二倍角公式及和差公式,即可求得本题答案.【详解】(Ⅰ)因为,由正弦定理可得,,又,所以,所以根据余弦定理得,,解得,;(Ⅱ)因为,所以,,,则.【点睛】本题主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,属基础题.21、(1);(2).【解析】

(1)利用导数的几何意义求出切线的斜率,再求出切点坐标即可得在点处的切线方程;(2)令,然后利用导数并根据a的情况研究函数的单调性和最值.【详解】(1),,∴,又,∴切线方程为,即.(2)令,,①若,则在上单调递减,又,∴恒成立,∴在上单调递减,又,∴恒成立.②若,令,∴,易知与在上单调递减,∴在上单调递减,,当即时,在上恒成立,∴在上单调递减,即在上单调递减,又,∴恒成立,∴在上单调递减,又,∴恒成立,当即时,使,∴在递增,此时,∴,∴在递增,∴,不合题意.综上,实数的取值范围是.【点睛】本题主要考查导数的几何意义及构造函数解决含参数的不等式恒成立时求参数的取值范围问题,第二问的难点是构造函数后二次求导问题,对分类讨论思想及化归与等价转化思想要求较高,难度较大,属拔高题.22、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论