版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省宜昌县域高中协同发展共合体高考数学三模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则A. B.C. D.2.等腰直角三角形的斜边AB为正四面体侧棱,直角边AE绕斜边AB旋转,则在旋转的过程中,有下列说法:(1)四面体EBCD的体积有最大值和最小值;(2)存在某个位置,使得;(3)设二面角的平面角为,则;(4)AE的中点M与AB的中点N连线交平面BCD于点P,则点P的轨迹为椭圆.其中,正确说法的个数是()A.1 B.2 C.3 D.43.设函数,当时,,则()A. B. C.1 D.4.已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点()A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变5.在中所对的边分别是,若,则()A.37 B.13 C. D.6.已知集合,,则()A. B. C. D.7.已知函数,则()A. B.1 C.-1 D.08.若单位向量,夹角为,,且,则实数()A.-1 B.2 C.0或-1 D.2或-19.已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是()A. B. C. D.10.已知集合.为自然数集,则下列表示不正确的是()A. B. C. D.11.已知集合,,则A. B.C. D.12.已知某几何体的三视图如图所示,则该几何体的体积是()A. B.64 C. D.32二、填空题:本题共4小题,每小题5分,共20分。13.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____.14.在二项式的展开式中,的系数为________.15.已知集合,,则__________.16.已知抛物线的焦点为,过点且斜率为1的直线交抛物线于两点,,若线段的垂直平分线与轴交点的横坐标为,则的值为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+1(1)求数列{an}(2)设cn=bnan,求数列18.(12分)已知函数(I)若讨论的单调性;(Ⅱ)若,且对于函数的图象上两点,存在,使得函数的图象在处的切线.求证:.19.(12分)语音交互是人工智能的方向之一,现在市场上流行多种可实现语音交互的智能音箱.主要代表有小米公司的“小爱同学”智能音箱和阿里巴巴的“天猫精灵”智能音箱,它们可以通过语音交互满足人们的部分需求.某经销商为了了解不同智能音箱与其购买者性别之间的关联程度,从某地区随机抽取了100名购买“小爱同学”和100名购买“天猫精灵”的人,具体数据如下:“小爱同学”智能音箱“天猫精灵”智能音箱合计男4560105女554095合计100100200(1)若该地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,试估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多多少人?(2)根据列联表,能否有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.82820.(12分)在极坐标系中,曲线的极坐标方程为(1)求曲线与极轴所在直线围成图形的面积;(2)设曲线与曲线交于,两点,求.21.(12分)已知函数.(1)当时,求函数的值域;(2)的角的对边分别为且,,求边上的高的最大值.22.(10分)某市调硏机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表:月收入(单位:百元)频数51055频率0.10.20.10.1赞成人数4812521(1)若所抽调的50名市民中,收入在的有15名,求,,的值,并完成频率分布直方图.(2)若从收入(单位:百元)在的被调查者中随机选取2人进行追踪调查,选中的2人中恰有人赞成“楼市限购令”,求的分布列与数学期望.(3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
因为,,所以,,故选D.2、C【解析】
解:对于(1),当CD⊥平面ABE,且E在AB的右上方时,E到平面BCD的距离最大,当CD⊥平面ABE,且E在AB的左下方时,E到平面BCD的距离最小,∴四面体E﹣BCD的体积有最大值和最小值,故(1)正确;对于(2),连接DE,若存在某个位置,使得AE⊥BD,又AE⊥BE,则AE⊥平面BDE,可得AE⊥DE,进一步可得AE=DE,此时E﹣ABD为正三棱锥,故(2)正确;对于(3),取AB中点O,连接DO,EO,则∠DOE为二面角D﹣AB﹣E的平面角,为θ,直角边AE绕斜边AB旋转,则在旋转的过程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正确;对于(4)AE的中点M与AB的中点N连线交平面BCD于点P,P到BC的距离为:dP﹣BC,因为<1,所以点P的轨迹为椭圆.(4)正确.故选:C.点睛:该题考查的是有关多面体和旋转体对应的特征,以几何体为载体,考查相关的空间关系,在解题的过程中,需要认真分析,得到结果,注意对知识点的灵活运用.3、A【解析】
由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值.【详解】,时,,,∴,由题意,∴.故选:A.【点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键.4、D【解析】
由函数的图象关于直线对称,得,进而得再利用图像变换求解即可【详解】由函数的图象关于直线对称,得,即,解得,所以,,故只需将函数的图象上的所有点“先向左平移个单位长度,得再将横坐标缩短为原来的,纵坐标保持不变,得”即可.故选:D【点睛】本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题5、D【解析】
直接根据余弦定理求解即可.【详解】解:∵,∴,∴,故选:D.【点睛】本题主要考查余弦定理解三角形,属于基础题.6、B【解析】
求出集合,利用集合的基本运算即可得到结论.【详解】由,得,则集合,所以,.故选:B.【点睛】本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.7、A【解析】
由函数,求得,进而求得的值,得到答案.【详解】由题意函数,则,所以,故选A.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键,着重考查了推理与运算能力,属于基础题.8、D【解析】
利用向量模的运算列方程,结合向量数量积的运算,求得实数的值.【详解】由于,所以,即,,即,解得或.故选:D【点睛】本小题主要考查向量模的运算,考查向量数量积的运算,属于基础题.9、A【解析】
由已知先确定出双曲线方程为,再分别找到为直角三角形的两种情况,最后再结合即可解决.【详解】由已知可得,,所以,从而双曲线方程为,不妨设点在双曲线右支上运动,则,当时,此时,所以,,所以;当轴时,,所以,又为锐角三角形,所以.故选:A.【点睛】本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.10、D【解析】
集合.为自然数集,由此能求出结果.【详解】解:集合.为自然数集,在A中,,正确;在B中,,正确;在C中,,正确;在D中,不是的子集,故D错误.故选:D.【点睛】本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题.11、D【解析】
因为,,所以,,故选D.12、A【解析】
根据三视图,还原空间几何体,即可得该几何体的体积.【详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4,故.故选:A【点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
直接根据分层抽样的比例关系得到答案.【详解】分层抽样的抽取比例为,∴抽取学生的人数为6001.故答案为:1.【点睛】本题考查了分层抽样的计算,属于简单题.14、60【解析】
直接利用二项式定理计算得到答案.【详解】二项式的展开式通项为:,取,则的系数为.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.15、【解析】
直接根据集合和集合求交集即可.【详解】解:,,所以.故答案为:【点睛】本题考查集合的交集运算,是基础题.16、1【解析】
设,写出直线方程代入抛物线方程后应用韦达定理求得,由抛物线定义得焦点弦长,求得,再写出的垂直平分线方程,得,从而可得结论.【详解】抛物线的焦点坐标为,直线的方程为,据得.设,则.线段垂直平分线方程为,令,则,所以,所以.故答案为:1.【点睛】本题考查抛物线的焦点弦问题,根据抛物线的定义表示出焦点弦长是解题关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)an=(2)Tn【解析】
(1)利用an与Sn的递推关系可以an的通项公式;P点代入直线方程得b【详解】(1)由an+1=2S两式相减得an+1-a又a2=2S1+1=3,所以a由点P(bn,bn+1则数列{bn(2)因为cn=b则13两式相减得:23所以Tn【点睛】用递推关系an=Sn-18、(1)见解析(2)见证明【解析】
(1)对函数求导,分别讨论,以及,即可得出结果;(2)根据题意,由导数几何意义得到,将证明转化为证明即可,再令,设,用导数方法判断出的单调性,进而可得出结论成立.【详解】(1)解:易得,函数的定义域为,,令,得或.①当时,时,,函数单调递减;时,,函数单调递增.此时,的减区间为,增区间为.②当时,时,,函数单调递减;或时,,函数单调递增.此时,的减区间为,增区间为,.③当时,时,,函数单调递增;此时,的减区间为.综上,当时,的减区间为,增区间为:当时,的减区间为,增区间为.;当时,增区间为.(2)证明:由题意及导数的几何意义,得由(1)中得.易知,导函数在上为增函数,所以,要证,只要证,即,即证.因为,不妨令,则.所以,所以在上为增函数,所以,即,所以,即,即.故有(得证).【点睛】本题主要考查导数的应用,通常需要对函数求导,利用导数的方法研究函数的单调性以及函数极值等即可,属于常考题型.19、(1)多2350人;(2)有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关.【解析】
(1)根据题意,知100人中购买“小爱同学”的女性有55人,购买“天猫精灵”的女性有40人,即可估计该地区购买“小爱同学”的女性人数和购买“天猫精灵”的女性的人数,即可求得答案;(2)根据列联表和给出的公式,求出,与临界值比较,即可得出结论.【详解】解:(1)由题可知,100人中购买“小爱同学”的女性有55人,购买“天猫精灵”的女性有40人,由于地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,估计购买“小爱同学”的女性有人.估计购买“天猫精灵”的女性有人.则,∴估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多2350人.(2)由题可知,,∴有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关.【点睛】本题考查随机抽样估计总体以及独立性检验的应用,考查计算能力.20、(1);(2)【解析】
(1)利用互化公式,将曲线的极坐标方程化为直角坐标方程,得出曲线与极轴所在直线围成的图形是一个半径为1的圆周及一个两直角边分别为1与的直角三角形,即可求出面积;(2)联立方程组,分别求出和的坐标,即可求出.【详解】解:(1)由于的极坐标方程为,根据互化公式得,曲线的直角坐标方程为:当时,,当时,,则曲线与极轴所在直线围成的图形,是一个半径为1的圆周及一个两直角边分别为1与的直角三角形,∴围成图形的面积.(2)由得,其直角坐标为,化直角坐标方程为,化直角坐标方程为,∴,∴.【点睛】本题考查利用互化公式将极坐标方程化为直角坐标方程,以及联立方程组求交点坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年数据中心机电安装及布线合同
- 2024年摄影师聘用合同3篇
- 2024年智能充电桩共建共享合同3篇
- 2024年房地产交易会参展商合作合同标准模板一
- 2024年标准化车辆维护服务协议样本版
- 2024年工程单项劳务合作协议格式范本版B版
- 2024年度文化艺术展览交流合同
- 2024年度窑炉施工协议详例细则版B版
- 2024年医院消毒供应中心建设与合作3篇
- 2024年反担保协议法律文件样式版
- 污水处理药剂采购投标方案(技术方案)
- 餐费补助申请表
- 国开《Windows网络操作系统管理》形考任务2-配置本地帐户与活动目录域服务实训
- 景观工程详细施工组织进度计划表
- 涉酒案件警示教育心得体会范文(通用4篇)
- 企业涉法涉诉案件情况统计表
- 铁路2010年预算定额
- 律师事务所税务规划(齐金勃)
- 环网柜的施工方案
- 晕厥的诊断与治疗课件
- 教师口语艺术学习通超星课后章节答案期末考试题库2023年
评论
0/150
提交评论