安徽工程大学《人工智能专业前沿》2021-2022学年第一学期期末试卷_第1页
安徽工程大学《人工智能专业前沿》2021-2022学年第一学期期末试卷_第2页
安徽工程大学《人工智能专业前沿》2021-2022学年第一学期期末试卷_第3页
安徽工程大学《人工智能专业前沿》2021-2022学年第一学期期末试卷_第4页
安徽工程大学《人工智能专业前沿》2021-2022学年第一学期期末试卷_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页安徽工程大学

《人工智能专业前沿》2021-2022学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共15个小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在人工智能的对话系统中,假设需要根据用户的上下文和历史对话信息生成连贯且有针对性的回复。以下哪种方法能够更好地利用上下文信息?()A.使用循环神经网络(RNN)或长短时记忆网络(LSTM)捕捉序列信息B.只关注当前输入的文本,不考虑历史信息C.对上下文信息进行简单的统计分析D.随机生成回复,不依赖上下文2、在计算机视觉中,以下哪种任务需要对图像中的目标进行定位和分类?()A.图像分类B.目标检测C.图像分割D.图像生成3、人工智能在物流配送中的路径规划方面具有应用潜力。假设要为快递配送车辆规划最优路径,以下关于其应用的描述,哪一项是不准确的?()A.考虑交通状况、货物重量和配送时间等因素,优化路径选择B.利用启发式算法可以在较短时间内找到近似最优的配送路径C.人工智能规划的路径一定是最短的,不会受到任何突发情况的影响D.实时更新路况信息,动态调整配送路径,提高配送效率4、自然语言处理是人工智能的重要领域之一,涉及到文本分类、机器翻译等多个任务。假设要构建一个能够自动将英语文章翻译成中文的系统,需要考虑语言的语法、语义和上下文等复杂因素。以下哪种技术或方法在机器翻译中能够更好地捕捉语言的长距离依赖关系和语义表示?()A.基于规则的翻译方法B.统计机器翻译C.神经机器翻译(NMT)D.词袋模型5、人工智能中的预训练语言模型,如GPT-3,具有很强的语言理解和生成能力。假设要将这样的预训练模型应用于特定的任务,以下关于模型应用的描述,正确的是:()A.可以直接在预训练模型上进行微调,就能适应新的任务,无需额外的训练数据B.预训练模型的参数固定,不能根据任务需求进行调整和优化C.预训练模型的语言生成能力很强,但在特定领域的专业知识上可能存在不足D.预训练模型在所有自然语言处理任务中都能取得最优的效果6、在人工智能的发展中,伦理和社会问题受到越来越多的关注。假设一个城市正在考虑大规模部署自动驾驶汽车。以下关于人工智能伦理问题的描述,哪一项是错误的?()A.自动驾驶汽车在面临道德困境时,如选择保护乘客还是行人,需要制定明确的决策规则B.人工智能的应用可能导致部分工作岗位的消失,但同时也会创造新的就业机会C.只要人工智能技术能够带来便利和效率,就无需考虑其可能产生的伦理和社会影响D.数据隐私和安全是人工智能应用中需要重点关注的伦理问题,需要采取措施保护用户的个人信息7、人工智能中的联邦学习是一种新兴的技术。假设多个机构想要在保护数据隐私的前提下共同训练一个模型,以下关于联邦学习的描述,正确的是:()A.联邦学习中,各机构的数据需要集中到一个中心服务器进行统一训练B.联邦学习能够在不共享原始数据的情况下实现模型的协同训练C.联邦学习只适用于小规模的数据和简单的模型结构D.联邦学习过程中不存在数据安全和隐私泄露的风险8、人工智能在教育领域的应用有望实现个性化学习和智能辅导。假设一个在线学习平台使用人工智能为学生提供个性化课程推荐,以下关于教育领域人工智能应用的描述,正确的是:()A.人工智能可以完全根据学生的学习成绩来推荐课程,无需考虑其他因素B.学生的学习习惯、兴趣和知识水平等因素都应该被纳入人工智能的课程推荐模型中C.人工智能在教育领域的应用可能会导致学生过度依赖技术,降低自主学习能力D.教育领域的人工智能应用不需要考虑教育伦理和学生隐私保护问题9、在人工智能的自然语言生成中,故事生成是一个富有创意的任务。假设我们要让计算机生成一个富有想象力的童话故事,以下关于故事生成的挑战,哪一项是不正确的?()A.创造新颖和有趣的情节B.保持故事的逻辑连贯性C.符合特定的文化和社会背景D.故事生成不需要考虑读者的喜好和期望10、在人工智能的强化学习中,假设环境的奖励信号存在延迟和不确定性。以下哪种方法能够帮助智能体更好地应对这种情况?()A.使用深度强化学习算法,具有更强的表示能力B.引入先验知识和启发式策略C.增加训练的迭代次数D.以上都是11、强化学习是人工智能的一个重要分支,常用于训练智能体做出最优决策。假设一个智能体在一个复杂的环境中学习,以下关于强化学习的描述,正确的是:()A.智能体通过随机尝试不同的动作来学习,不需要任何奖励反馈B.奖励函数的设计对智能体的学习效果没有影响,只要有足够的训练时间就能学会最优策略C.强化学习算法能够保证智能体在有限的时间内找到绝对最优的决策策略D.智能体在学习过程中会不断调整策略以最大化累积奖励12、人工智能在智能客服领域的应用越来越广泛。假设一个企业要部署智能客服系统。以下关于智能客服的描述,哪一项是不正确的?()A.能够快速回答常见问题,提高客户服务的响应速度B.可以通过不断学习和优化,提高回答的准确性和满意度C.智能客服能够完全理解客户的复杂情感和意图,提供个性化的服务D.与人工客服相结合,可以提供更优质的客户服务体验13、人工智能中的聚类算法用于将数据分组为不同的簇。假设要对一组客户数据进行聚类分析。以下关于聚类算法的描述,哪一项是不准确的?()A.K-Means算法是一种常见的聚类算法,需要事先指定簇的数量B.聚类算法可以发现数据中的潜在模式和结构,帮助进行市场细分等应用C.不同的聚类算法在不同的数据分布和场景下表现各异,需要根据实际情况选择D.聚类结果是唯一确定的,不受算法参数和初始值的影响14、人工智能中的迁移学习是一种有效的技术手段。以下关于迁移学习的描述,不正确的是()A.迁移学习可以利用已有的预训练模型和知识,在新的任务和数据上进行微调B.迁移学习能够减少新任务中的数据标注工作量和训练时间C.迁移学习只能在相似的领域和任务中应用,无法跨越不同的领域D.合理运用迁移学习可以提高模型的泛化能力和性能15、人工智能中的迁移学习是一种有效的技术。假设要将一个在大规模数据集上训练好的图像分类模型应用到一个特定的小数据集上,以下关于迁移学习的描述,正确的是:()A.可以直接将原模型在新数据集上进行微调,快速获得较好的性能B.由于数据集差异较大,原模型无法在新数据集上使用,需要重新训练C.迁移学习只能在相同领域的任务之间进行,不同领域无法应用D.迁移学习会导致模型过拟合新数据集,降低泛化能力二、简答题(本大题共3个小题,共15分)1、(本题5分)谈谈人工智能在智能供应链预测中的应用。2、(本题5分)简述K-Means聚类算法的步骤和优缺点。3、(本题5分)简述人工智能在通信领域的创新。三、操作题(本大题共5个小题,共25分)1、(本题5分)使用机器学习算法预测股票价格的走势,收集历史股票数据进行特征提取和模型训练,评估预测的准确性。2、(本题5分)使用OpenCV和深度学习模型,实现对指纹的识别和匹配。应用于安全认证系统。3、(本题5分)借助TensorFlow构建一个强化学习模型,让智能体学习在一个模拟的游戏环境中掌握游戏策略,如棋类游戏、射击游戏等。设计游戏规则和奖励机制,观察智能体在训练过程中的策略进化和游戏水平提升,评估模型在不同难度级别游戏中的表现。4、(本题5分)使用Python中的TensorFlow库,构建一个简单的多层感知机(MLP)模型,用于对鸢尾花数据集进行分类。要求对数据进行预处理、划分训练集和测试集,并对模型进行训练和评估,给出准确率等评估指标。5、(本题5分)利用PyTorch构建一个知识图谱补全模型,根据已有的知识图谱结构和部分节点信息,预测缺失的关系和节点。评

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论